Suppr超能文献

真菌使用高效算法来探索微流体网络。

Fungi use efficient algorithms for the exploration of microfluidic networks.

作者信息

Hanson Kristi L, Nicolau Dan V, Filipponi Luisa, Wang Lisen, Lee Abraham P, Nicolau Dan V

机构信息

BioNanoEngineering Labs, Faculty of Engineering and Industrial Science, Swinburne University of Technology, John Street, Hawthorn, Victoria 3122, Australia.

出版信息

Small. 2006 Oct;2(10):1212-20. doi: 10.1002/smll.200600105.

Abstract

Fungi, in particular, basidiomycetous fungi, are very successful in colonizing microconfined mazelike networks (for example, soil, wood, leaf litter, plant and animal tissues), a fact suggesting that they may be efficient solving agents of geometrical problems. We therefore evaluated the growth behavior and optimality of fungal space-searching algorithms in microfluidic mazes and networks. First, we found that fungal growth behavior was indeed strongly modulated by the geometry of microconfinement. Second, the fungus used a complex growth and space-searching strategy comprising two algorithmic subsets: 1) long-range directional memory of individual hyphae and 2) inducement of branching by physical obstruction. Third, stochastic simulations using experimentally measured parameters showed that this strategy maximizes both survival and biomass homogeneity in microconfined networks and produces optimal results only when both algorithms are synergistically used. This study suggests that even simple microorganisms have developed adequate strategies to solve nontrivial geometrical problems.

摘要

尤其是真菌,担子菌纲真菌,在定殖于微受限迷宫状网络(例如土壤、木材、落叶层、动植物组织)方面非常成功,这一事实表明它们可能是几何问题的有效解决者。因此,我们评估了真菌在微流体迷宫和网络中的生长行为及空间搜索算法的最优性。首先,我们发现真菌的生长行为确实受到微受限几何形状的强烈调节。其次,真菌采用了一种复杂的生长和空间搜索策略,该策略由两个算法子集组成:1)单个菌丝的长程方向记忆,以及2)物理阻碍诱导分支。第三,使用实验测量参数进行的随机模拟表明,这种策略在微受限网络中使生存和生物量均匀性最大化,并且只有当两种算法协同使用时才会产生最优结果。这项研究表明,即使是简单的微生物也已经开发出了足够的策略来解决复杂的几何问题。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验