Suppr超能文献

声波修复:声波刺激可增强植物促生真菌的活性。

Sonic restoration: acoustic stimulation enhances plant growth-promoting fungi activity.

机构信息

College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.

The Aerobiome Innovation and Research Hub, College of Science and Engineering, Flinders University, Bedford Park, South Australia 5042, Australia.

出版信息

Biol Lett. 2024 Oct;20(10):20240295. doi: 10.1098/rsbl.2024.0295. Epub 2024 Oct 2.

Abstract

Ecosystem restoration interventions often utilize visible elements to restore an ecosystem (e.g. replanting native plant communities and reintroducing lost species). However, using acoustic stimulation to help restore ecosystems and promote plant growth has received little attention. Our study aimed to assess the effect of acoustic stimulation on the growth rate and sporulation of the plant growth-promoting fungus Rifai, 1969. We played a monotone acoustic stimulus (80 dB sound pressure level (SPL) at a peak frequency of 8 kHz and a bandwidth at -10 dB from the peak of 6819 Hz-parameters determined via review and pilot research) over 5 days to to assess whether acoustic stimulation affected the growth rate and sporulation of this fungus (control samples received only ambient sound stimulation less than 30 dB). We show that the acoustic stimulation treatments resulted in increased fungal biomass and enhanced conidia (spore) activity compared to controls. These results indicate that acoustic stimulation influences plant growth-promoting fungal growth and potentially facilitates their functioning (e.g. stimulating sporulation). The mechanism responsible for this phenomenon may be fungal mechanoreceptor stimulation and/or potentially a piezoelectric effect; however, further research is required to confirm this hypothesis. Our novel study highlights the potential of acoustic stimulation to alter important fungal attributes, which could, with further development, be harnessed to aid ecosystem restoration and sustainable agriculture.

摘要

生态系统恢复干预措施通常利用可见元素来恢复生态系统(例如,重新种植本地植物群落和重新引入失去的物种)。然而,利用声刺激来帮助恢复生态系统和促进植物生长的做法却很少受到关注。我们的研究旨在评估声刺激对植物促生真菌 Rifai, 1969 生长率和孢子形成的影响。我们播放了单调的声刺激(80 dB 声压级(SPL),峰值频率为 8 kHz,带宽为从峰值下降 10 dB 时的 6819 Hz-通过回顾和试点研究确定的参数),持续 5 天,以评估声刺激是否会影响这种真菌的生长率和孢子形成(对照样品仅接受低于 30 dB 的环境声刺激)。我们发现,与对照相比,声刺激处理导致真菌生物量增加和分生孢子(孢子)活性增强。这些结果表明,声刺激会影响植物促生真菌的生长,并可能促进其功能(例如,刺激孢子形成)。负责这种现象的机制可能是真菌机械感受器的刺激和/或潜在的压电效应;然而,需要进一步的研究来证实这一假设。我们的新研究强调了声刺激改变重要真菌属性的潜力,这可能随着进一步的发展,被利用来帮助生态系统恢复和可持续农业。

相似文献

7
Interventions to prevent occupational noise-induced hearing loss.预防职业性噪声性听力损失的干预措施。
Cochrane Database Syst Rev. 2017 Jul 7;7(7):CD006396. doi: 10.1002/14651858.CD006396.pub4.

本文引用的文献

1
Revegetation through seeding or planting: A worldwide systematic map.通过播种或种植进行植被恢复:一份全球系统地图。
J Environ Manage. 2023 Jul 1;337:117713. doi: 10.1016/j.jenvman.2023.117713. Epub 2023 Mar 21.
6
Cells under pressure: how yeast cells respond to mechanical forces.压力下的细胞:酵母细胞如何应对机械力
Trends Microbiol. 2022 May;30(5):495-510. doi: 10.1016/j.tim.2021.11.006. Epub 2022 Jan 6.
9
Cell membrane mechanics and mechanosensory transduction.细胞膜力学与机械敏感转导。
Curr Top Membr. 2020;86:83-141. doi: 10.1016/bs.ctm.2020.08.002.
10
Piezoelectric Peptide and Metabolite Materials.压电肽与代谢物材料
Research (Wash D C). 2019 Nov 21;2019:9025939. doi: 10.34133/2019/9025939. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验