文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

黄河三角洲盐碱地花生生产:气象条件和土壤性质时空变化的影响。

Peanut production in saline-alkali land of Yellow River Delta: influence of spatiotemporal changes of meteorological conditions and soil properties.

机构信息

Shandong Peanut Research Institute, Qingdao, 266100, China.

Dongying Meteorological Bureau of Shandong Province, Dongying, 257091, China.

出版信息

BMC Plant Biol. 2024 Oct 30;24(1):1029. doi: 10.1186/s12870-024-05745-7.


DOI:10.1186/s12870-024-05745-7
PMID:39472776
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11524010/
Abstract

BACKGROUND: This study clarified the synergistic relationship among annual changes to specify the changes in agro-meteorological factors, soil characteristics and peanut growth in saline-alkali land near the estuary of the Yellow River Delta. We aimed to find the key factors affecting peanut production to optimize and regulate peanut planting mode in saline alkali soil. RESULTS: The daily average temperature from early May to late September in Lijin and Kenli was above 24 °C, with 470-600 mm of precipitation. The sunshine duration was 7.9 h/day and 7.3 h/day and the accumulated temperature was 3742 °C and 3809 °C, in Lijin and Kenli, respectively. Agro-meteorological conditions were suitable for peanut growth and development with the consistent main developmental period in the two experiment regions. The best sowing period was when the soil temperature stabilized above 18 °C in early May, and the best harvest was in mid-September. The soil volumetric water content in Lijin concentrated among 25-40%. Salt was mainly distributed in the 40-60 cm soil layers, and increased rapidly to 2.5 g kg in 0-20 cm cultivation layer in mid-May due to lack of precipitation. In Kenli experiment region, the soil volumetric water content ranged from 10 to 35%. Soil salinity was mainly distributed in the 20 cm soil layer, and the changes in salinity was little affected by precipitation. From mid-July to mid-August, the effective accumulated temperature of 5 cm soil layer was above 520 °C in both regions, which could ensure the normal pod development. The slow dynamic growth of kernel, high unfilled pod rate (26.99%) and low shelling rate (66.0%) might be the main reasons for low peanut yield in Lijin. CONCLUSION: Soil salinity was the main factor affecting pod development and yield. It was also a key point in optimizing the peanut planting mode in the saline alkali land of the Yellow River Delta.

摘要

背景:本研究阐明了黄河三角洲河口附近盐碱地农业气象因素、土壤特性和花生生长年际变化的协同关系,旨在找到影响花生产量的关键因素,优化和调控盐碱地花生种植模式。

结果:利津和垦利 5 月下旬至 9 月下旬日平均气温均在 24°C 以上,降雨量 470-600mm,日照时数 7.9h/d、7.3h/d,积温 3742°C、3809°C。两试验区农业气象条件均适宜花生生长发育,主生育期一致。最佳播种期为 5 月初土壤温度稳定在 18°C 以上,最佳收获期为 9 月中旬。利津土壤体积含水量集中在 25-40%之间,5 月中旬由于降水少,盐分主要分布在 40-60cm 土层中,迅速增加到 0-20cm 耕作层 2.5g/kg。垦利试验区土壤体积含水量在 10-35%之间,土壤盐分主要分布在 20cm 土层中,受降水影响较小。7 月中旬至 8 月中旬,两试验区 5cm 土层有效积温均在 520°C 以上,可保证正常荚果发育。利津区花生果仁缓慢动态生长,空秕率高(26.99%),脱壳率低(66.0%),可能是花生产量低的主要原因。

结论:土壤盐分是影响荚果发育和产量的主要因素,也是优化黄河三角洲盐碱地花生种植模式的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/11524010/8501d25539e1/12870_2024_5745_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/11524010/288927a4a457/12870_2024_5745_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/11524010/49285c47a4cd/12870_2024_5745_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/11524010/252dbd670e7c/12870_2024_5745_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/11524010/0581c8726343/12870_2024_5745_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/11524010/d14fbdc91e08/12870_2024_5745_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/11524010/8501d25539e1/12870_2024_5745_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/11524010/288927a4a457/12870_2024_5745_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/11524010/49285c47a4cd/12870_2024_5745_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/11524010/252dbd670e7c/12870_2024_5745_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/11524010/0581c8726343/12870_2024_5745_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/11524010/d14fbdc91e08/12870_2024_5745_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5433/11524010/8501d25539e1/12870_2024_5745_Fig6_HTML.jpg

相似文献

[1]
Peanut production in saline-alkali land of Yellow River Delta: influence of spatiotemporal changes of meteorological conditions and soil properties.

BMC Plant Biol. 2024-10-30

[2]
[Spatiotemporal dynamics of soil salinity in the Yellow River Delta under the impacts of hydrology and climate.].

Ying Yong Sheng Tai Xue Bao. 2021-4

[3]
The synergy effect of arbuscular mycorrhizal fungi symbiosis and exogenous calcium on bacterial community composition and growth performance of peanut (Arachis hypogaea L.) in saline alkali soil.

J Microbiol. 2021-1

[4]
[Soil amelioration of different vegetation types in saline-alkali land of the Yellow River Delta, China].

Ying Yong Sheng Tai Xue Bao. 2020-4

[5]
[Sap flow of Amorpha fruticosa in the secondary saline-alkali land in Ningxia Yellow River irrigation area, China.].

Ying Yong Sheng Tai Xue Bao. 2018-7

[6]
Arbuscular Mycorrhizal Fungi Restored the Saline-Alkali Soil and Promoted the Growth of Peanut Roots.

Plants (Basel). 2023-9-28

[7]
[Spatial variability of soil nutrients and salinity in coastal saline-alkali land based on belt transect method].

Ying Yong Sheng Tai Xue Bao. 2012-6

[8]
Spatial variability of soil salinity in coastal saline soil at different scales in the Yellow River Delta, China.

Environ Monit Assess. 2017-2

[9]
Metagenomic analysis reveals antibiotic resistance genes and virulence factors in the saline-alkali soils from the Yellow River Delta, China.

Environ Res. 2022-11

[10]
Transport characteristics of salt ions in soil columns planted with Tamarix chinensis under different groundwater levels.

PLoS One. 2019-4-12

引用本文的文献

[1]
Exploring the role of Peanut (Arachis hypogaea L.) root architecture in enhancing adaptation to climate change for sustainable agriculture and resilient crop production: A review.

J Genet Eng Biotechnol. 2025-9

[2]
The Improvement Effects of Intercropping Systems on Saline-Alkali Soils and Their Impact on Microbial Communities.

Microorganisms. 2025-6-20

[3]
Diversified Soil Types Differentially Regulated the Peanut ( L.) Growth and Rhizosphere Bacterial Community Structure.

Plants (Basel). 2025-4-9

本文引用的文献

[1]
Arbuscular Mycorrhizal Fungi Restored the Saline-Alkali Soil and Promoted the Growth of Peanut Roots.

Plants (Basel). 2023-9-28

[2]
Comprehensive climatic suitability evaluation of peanut in Huang-Huai-Hai region under the background of climate change.

Sci Rep. 2022-7-5

[3]
OsTTG1, a WD40 repeat gene, regulates anthocyanin biosynthesis in rice.

Plant J. 2021-7

[4]
The synergy effect of arbuscular mycorrhizal fungi symbiosis and exogenous calcium on bacterial community composition and growth performance of peanut (Arachis hypogaea L.) in saline alkali soil.

J Microbiol. 2021-1

[5]
[Indices selection and comprehensive evaluation of salinity tolerance for peanut varieties].

Ying Yong Sheng Tai Xue Bao. 2013-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索