Suppr超能文献

从扩散峰度时间依赖性揭示膜完整性和细胞大小。

Revealing membrane integrity and cell size from diffusion kurtosis time dependence.

作者信息

Lee Hong-Hsi, Novikov Dmitry S, Fieremans Els, Huang Susie Y

机构信息

Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.

Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Magn Reson Med. 2025 Mar;93(3):1329-1347. doi: 10.1002/mrm.30335. Epub 2024 Oct 29.

Abstract

PURPOSE

The nonmonotonic dependence of diffusion kurtosis on diffusion time has been observed in biological tissues, yet its relation to membrane integrity and cellular geometry remains to be clarified. Here we establish and explain the characteristic asymmetric shape of the kurtosis peak. We also derive the relation between the peak time , when kurtosis reaches its maximum, and tissue parameters.

METHODS

The peak shape and its position qualitatively follow from the adiabatic extension of the Kärger model onto the case of intra-cellular diffusivity time-dependence. This intuition is corroborated by the effective medium theory-based calculation, as well as by Monte Carlo simulations of diffusion and exchange in randomly and densely packed spheres for various values of permeability, cell fractions and sizes, and intrinsic diffusivity.

RESULTS

We establish that is proportional to the geometric mean of two characteristic time scales: extra-cellular correlation time (determined by cell size) and intra-cellular residence time (determined by membrane permeability). When exchange is barrier-limited, the peak shape approaches a universal scaling form determined by the ratio .

CONCLUSION

Numerical simulations and theory provide an interpretation of a specific feature of kurtosis time-dependence, offering a potential biomarker for in vivo evaluation of pathology by disentangling the functional (permeability) and structural (cell size) integrity in tissues. This is relevant as the time-dependent diffusion cumulants are sensitive to pathological changes in membrane integrity and cellular structure in diseases, such as ischemic stroke, tumors, and Alzheimer's disease.

摘要

目的

在生物组织中已观察到扩散峰度对扩散时间的非单调依赖性,但其与膜完整性和细胞几何形状的关系仍有待阐明。在此,我们建立并解释峰度峰值的特征不对称形状。我们还推导了峰度达到最大值时的峰值时间与组织参数之间的关系。

方法

峰值形状及其位置定性地源于将卡尔格模型绝热扩展到细胞内扩散率随时间变化的情况。基于有效介质理论的计算以及对各种渗透率、细胞分数和大小以及固有扩散率值的随机密集堆积球体中的扩散和交换进行的蒙特卡罗模拟证实了这种直觉。

结果

我们确定峰值时间与两个特征时间尺度的几何平均值成正比:细胞外相关时间(由细胞大小决定)和细胞内停留时间(由膜渗透率决定)。当交换受屏障限制时,峰值形状接近由该比率决定的通用标度形式。

结论

数值模拟和理论为峰度时间依赖性的一个特定特征提供了解释,通过区分组织中的功能(渗透率)和结构(细胞大小)完整性,为体内病理学评估提供了一种潜在的生物标志物。这是相关的,因为随时间变化的扩散累积量对诸如缺血性中风、肿瘤和阿尔茨海默病等疾病中膜完整性和细胞结构的病理变化敏感。

相似文献

4
Diffusion-time dependence of diffusional kurtosis in the mouse brain.小鼠脑扩散峰度的扩散时间依赖性。
Magn Reson Med. 2020 Sep;84(3):1564-1578. doi: 10.1002/mrm.28189. Epub 2020 Feb 5.

本文引用的文献

10
Ions, the Movement of Water and the Apoptotic Volume Decrease.离子、水的运动与凋亡性体积减小
Front Cell Dev Biol. 2020 Nov 25;8:611211. doi: 10.3389/fcell.2020.611211. eCollection 2020.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验