Suppr超能文献

耳科学手术视频中耳科器械的人工智能追踪。

Artificial Intelligence Tracking of Otologic Instruments in Mastoidectomy Videos.

机构信息

Department of Otolaryngology-Head and Neck Surgery, Stanford University.

出版信息

Otol Neurotol. 2024 Dec 1;45(10):1192-1197. doi: 10.1097/MAO.0000000000004330. Epub 2024 Oct 28.

Abstract

OBJECTIVE

Develop an artificial intelligence (AI) model to track otologic instruments in mastoidectomy videos.

STUDY DESIGN

Retrospective case series.

SETTING

Tertiary care center.

SUBJECTS

Six otolaryngology residents (PGY 3-5) and one senior neurotology attending.

INTERVENTIONS

Thirteen 30-minute videos of cadaveric mastoidectomies were recorded by residents. The suction irrigator and drill were semi-manually annotated. Videos were split into training (N = 8), validation (N = 3), and test (N = 2) sets. YOLOv8, a state-of-the-art AI computer vision model, was adapted to track the instruments.

MAIN OUTCOME MEASURES

Precision, recall, and mean average precision using an intersection over union cutoff of 50% (mAP50). Drill speed in two prospectively collected live mastoidectomy videos by a resident and attending surgeon.

RESULTS

The model achieved excellent performance for tracking the drill (precision 0.93, recall 0.89, and mAP50 0.93) and low performance for the suction irrigator (precision 0.67, recall 0.61, and mAP50 0.62) in test videos. Prediction speed was fast (~100 milliseconds per image). Predictions on prospective videos revealed higher mean drill speed (8.6 ± 5.7 versus 7.6 ± 7.4 mm/s, respectively; mean ± SD; p < 0.01) and duration of high drill speed (>15 mm/s; p < 0.05) in attending than resident surgery.

CONCLUSIONS

An AI model can track the drill in mastoidectomy videos with high accuracy and near-real-time processing speed. Automated tracking opens the door to analyzing objective metrics of surgical skill without the need for manual annotation and will provide valuable data for future navigation and augmented reality surgical environments.

摘要

目的

开发一种人工智能 (AI) 模型来跟踪乳突切除术视频中的耳科器械。

研究设计

回顾性病例系列。

设置

三级护理中心。

受试者

六名耳鼻喉科住院医师(PGY 3-5)和一名高级神经耳科主治医生。

干预措施

住院医师记录了 13 个 30 分钟的尸体乳突切除术视频。使用半自动方法对吸引冲洗器和钻头进行注释。将视频分为训练集(N = 8)、验证集(N = 3)和测试集(N = 2)。使用最先进的人工智能计算机视觉模型 YOLOv8 来跟踪器械。

主要观察指标

使用交并比(IOU)阈值为 50%(mAP50)的精度、召回率和平均精度。在两名住院医师和一名主治医生进行的两项前瞻性活体乳突切除术视频中记录钻头速度。

结果

在测试视频中,该模型对钻头的跟踪表现出色(精度 0.93,召回率 0.89,mAP50 为 0.93),对吸引冲洗器的跟踪表现较差(精度 0.67,召回率 0.61,mAP50 为 0.62)。预测速度很快(每张图像约 100 毫秒)。在前瞻性视频中,预测结果显示主治医生手术的钻头平均速度(8.6 ± 5.7 与 7.6 ± 7.4 mm/s,平均值 ± 标准差;p < 0.01)和高速度钻头(>15 mm/s)持续时间均高于住院医师手术(p < 0.05)。

结论

人工智能模型可以准确、实时地跟踪乳突切除术视频中的钻头。自动跟踪为分析手术技能的客观指标打开了大门,而无需手动注释,并将为未来的导航和增强现实手术环境提供有价值的数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验