Suppr超能文献

氧化还原金属酶中的蛋白质震颤:小分子底物分子结合引发分子酶导电性的线索

Protein Quakes in Redox Metalloenzymes: Clues to Molecular Enzyme Conductivity Triggered by Binding of Small Substrate Molecules.

作者信息

Bohr Henrik, Shim Irene, Ulstrup Jens, Xiao Xinxin

机构信息

Department of Chemical Engineering, Technical University of Denmark, Building 229, Kemitorvet, DK-2800 Kgs., Lyngby, Denmark.

Department of Chemistry, Technical University of Denmark,Building 207, Kemitorvet, DK-2800 Kgs., Lyngby, Denmark.

出版信息

ChemistryOpen. 2024 Dec;13(12):e202400190. doi: 10.1002/open.202400190. Epub 2024 Oct 30.

Abstract

Multicentre redox metalloproteins undergo conformational changes on electrochemical surfaces, or on enzyme substrate binding. The two-centre copper enzymes, laccase (Type I and TypeII/III Cu) and nitrite reductase (CuNIR) (Type I and Type II Cu) are examples. With some exceptions, these enzymes show no non-turnover voltammetry on Au(111)-surfaces modified by thiol based self-assembled molecular monolayers, but dioxygen or nitrite substrate triggers strong electrocatalytic signals. Scanning tunnelling microscopy also shows high conductivity only when dioxygen or nitrite is present. Atomic force microscopy shows constant CuNIR height but pronounced structural expansion in the electrocatalytic range on nitrite binding. We have recently offered a rationale, based on ab initio quantum chemical studies of water/nitrite substitution in a 740-atom CuNIR fragment. Presently we provide much more detailed structural assignment mapped to single-residue resolution. NO -binding induces both a 2 Å Cu-Cu distance increase, and pronounced frontier orbital delocalization strongly facilitating ET between the Cu regions. The conformational changes transmit from the catalytic Type II centre to the electron inlet Type I centre, via the His129-Cys130 ligands, and via Type I-Cys130 or Type I-His129 ending at Type II Asp92. The ET patterns are reflected in different atomic Mulliken charges in the water and nitrite CuNIR fragment.

摘要

多中心氧化还原金属蛋白在电化学表面或酶与底物结合时会发生构象变化。双中心铜酶,如漆酶(I型和II/III型铜)和亚硝酸还原酶(CuNIR)(I型和II型铜)就是例子。除了一些例外情况,这些酶在由基于硫醇的自组装分子单层修饰的Au(111)表面上没有非周转伏安法,但氧气或亚硝酸盐底物会触发强烈的电催化信号。扫描隧道显微镜也显示只有在存在氧气或亚硝酸盐时才具有高导电性。原子力显微镜显示CuNIR的高度恒定,但在亚硝酸盐结合的电催化范围内结构有明显扩展。我们最近基于对一个740个原子的CuNIR片段中水/亚硝酸盐取代的从头算量子化学研究给出了一个解释。目前我们提供了更详细的结构归属,分辨率达到单残基水平。NO结合既导致Cu-Cu距离增加2 Å,又导致明显的前沿轨道离域,极大地促进了Cu区域之间的电子转移(ET)。构象变化通过His129-Cys130配体,以及通过以II型Asp92结尾的I型-Cys130或I型-His129从催化的II型中心传递到电子入口I型中心。电子转移模式反映在水和亚硝酸盐CuNIR片段中不同的原子穆利肯电荷上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/affa/11625961/6bf3419bb15f/OPEN-13-e202400190-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验