Suppr超能文献

理解分子与电化学电荷转移:理论与计算

Understanding molecular and electrochemical charge transfer: theory and computations.

作者信息

Nazmutdinov Renat R, Shermokhamedov Shokirbek A, Zinkicheva Tamara T, Ulstrup Jens, Xiao Xinxin

机构信息

Department of Inorganic Chemistry, Kazan National Research Technological University, K. Marx Str., 68, 420015 Kazan, Republic of Tatarstan, Russian Federation.

Department of Chemistry, Technical University of Denmark, Building 207, Kemitorvet, 2800 Kongens Lyngby, Denmark.

出版信息

Chem Soc Rev. 2023 Sep 18;52(18):6230-6253. doi: 10.1039/d2cs00006g.

Abstract

Electron, proton, and proton-coupled electron transfer (PCET) are crucial elementary processes in chemistry, electrochemistry, and biology. We provide here a gentle overview of retrospective and currently developing theoretical formalisms of chemical, electrochemical and biological molecular charge transfer processes, with examples of how to bridge electron, proton, and PCET theory with experimental data. We offer first a theoretical minimum of molecular electron, proton, and PCET processes in homogeneous solution and at electrochemical interfaces. We illustrate next the use of the theory both for simple electron transfer processes, and for processes that involve molecular reorganization beyond the simplest harmonic approximation, with dissociative electron transfer and inclusion of all charge transfer parameters. A core example is the electrochemical reduction of the SO anion. This is followed by discussion of core elements of proton and PCET processes and the electrochemical dihydrogen evolution reaction on different metal, semiconductor, and semimetal (say graphene) electrode surfaces. Other further focus is on stochastic chemical rate theory, and how this concept can rationalize highly non-traditional behaviour of charge transfer processes in mixed solvents. As a second major area we address ("long-range") chemical and electrochemical electron transfer through molecular frameworks using notions of superexchange and hopping. Single-molecule and single-entity electrochemistry are based on electrochemical scanning probe microscopies. () scanning tunnelling microscopy (STM) and atomic force microscopy (AFM) are particularly emphasized, with theoretical notions and new molecular electrochemical phenomena in the confined tunnelling gap. Single-molecule surface structure and electron transfer dynamics are illustrated by self-assembled thiol molecular monolayers and by more complex redox target molecules. This discussion also extends single-molecule electrochemistry to bioelectrochemistry of complex redox metalloproteins and metalloenzymes. Our third major area involves computational overviews of molecular and electronic structure of the electrochemical interface, with new computational challenges. These relate to solvent dynamics in bulk and confined space (say carbon nanostructures), electrocatalysis, metallic and semiconductor nanoparticles, d-band metals, carbon nanostructures, spin catalysis and "spintronics", and "hot" electrons. Further perspectives relate to metal-organic frameworks, chiral surfaces, and spintronics.

摘要

电子、质子以及质子耦合电子转移(PCET)是化学、电化学和生物学中至关重要的基本过程。在此,我们简要概述化学、电化学和生物分子电荷转移过程的回顾性及当前正在发展的理论形式,并举例说明如何将电子、质子和PCET理论与实验数据相联系。我们首先介绍均相溶液及电化学界面中分子电子、质子和PCET过程的理论基础。接下来,我们说明该理论在简单电子转移过程以及涉及超越最简单简谐近似的分子重排过程中的应用,包括解离电子转移以及所有电荷转移参数的纳入。一个核心例子是SO阴离子的电化学还原。随后讨论质子和PCET过程的核心要素以及不同金属、半导体和半金属(如石墨烯)电极表面的电化学析氢反应。其他进一步的重点是随机化学速率理论,以及该概念如何解释混合溶剂中电荷转移过程的高度非传统行为。作为第二个主要领域,我们利用超交换和跳跃的概念探讨通过分子框架的(“长程”)化学和电化学电子转移。单分子和单实体电化学基于电化学扫描探针显微镜。特别强调了()扫描隧道显微镜(STM)和原子力显微镜(AFM),以及受限隧道间隙中的理论概念和新的分子电化学现象。通过自组装硫醇分子单层以及更复杂的氧化还原目标分子来说明单分子表面结构和电子转移动力学。该讨论还将单分子电化学扩展到复杂氧化还原金属蛋白和金属酶的生物电化学。我们的第三个主要领域涉及电化学界面分子和电子结构的计算概述以及新的计算挑战。这些挑战涉及本体和受限空间(如碳纳米结构)中的溶剂动力学、电催化、金属和半导体纳米颗粒、d带金属、碳纳米结构、自旋催化和“自旋电子学”以及“热”电子。进一步的展望涉及金属有机框架、手性表面和自旋电子学。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验