Suppr超能文献

……的大基因组背后的原因是什么。 你提供的原文不完整,请补充完整以便我能准确翻译。

What lies behind the large genome of .

作者信息

da Silva Leandro Lopes, Correia Hilberty Lucas Nunes, Gonçalves Osiel Silva, Vidigal Pedro Marcus Pereira, Rosa Rafael Oliveira, Santana Mateus Ferreira, de Queiroz Marisa Vieira

机构信息

LGMM, Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, Brazil.

Crop Production and Pest Control Research Unit, Agricultural Research Service, United States Department of Agriculture (USDA), West Lafayette, IN, United States.

出版信息

Front Fungal Biol. 2024 Oct 15;5:1459229. doi: 10.3389/ffunb.2024.1459229. eCollection 2024.

Abstract

is the etiological agent of anthracnose disease in common bean ( L.), noted for its ability to cause serious damage and significant pathogenic variability. This study reveals the features of the high-quality genome of . Analysis showed improvements over the first assembly, with the refined genome having 119 scaffolds, ten times fewer than the first, and a 19% increase in gene number. The effector candidates increased by nearly 1.5 times. More than 40% of the amino acid sequences with homologs in the Pathogen-Host Interactions (PHI-base) database are linked to pathogenicity. Of 18 putative proteins identified as Chitinase-like Protein, six have a mutation in the enzyme catalytic motif, and three showed gene expression in the biotrophic phase, indicating they can act as effectors. Comparative genomic analyses with 30 other fungal species revealed that is among the top three fungi encoding transport proteins. Seven Necrosis and Ethylene-Inducing Peptide 1 (Nep1)-Like Proteins (NLPs) are present in the genome, but none had complete identity with the GHRHDWE conserved motif of NLPs; two were grouped with proteins that induce necrosis and may retain the capability to induce host necrosis. species show a high number of secondary metabolite (SM) clusters, with having 47 SM clusters. Approximately 60% of the genome is composed of repetitive elements, a significantly higher proportion than in other fungi. These differences in transposable element (TE) numbers may explain why has one of the largest genomes among the fungi analyzed. A significant portion of its genome comprises retroelements, particularly the superfamily, which accounts for 22% of the genome and represents 40% of the repetitive elements. The genomic profile features a remarkably high RIP-affected genomic proportion of 54.77%, indicating substantial RIP activity within this species. This high-quality genome of , a significant pathogen in common bean cultivation, will support future research into this pathosystem, fostering a deeper understanding of the interaction between the fungus and its host.

摘要

是菜豆炭疽病的病原体,以其造成严重损害的能力和显著的致病变异性而闻名。本研究揭示了该物种高质量基因组的特征。分析表明,与首次组装相比有改进,优化后的基因组有119个支架,比首次组装减少了十倍,基因数量增加了19%。效应子候选物增加了近1.5倍。在病原体-宿主相互作用(PHI-base)数据库中有同源物的氨基酸序列中,超过40%与致病性相关。在鉴定为几丁质酶样蛋白的18种推定蛋白中,有六种在酶催化基序上发生了突变,三种在活体营养阶段显示出基因表达,表明它们可以作为效应子。与其他30种真菌物种的比较基因组分析表明,该物种在编码转运蛋白的真菌中位列前三。该物种的基因组中存在七种坏死和乙烯诱导肽1(Nep1)样蛋白(NLP),但没有一种与NLP的GHRHDWE保守基序完全相同;两种与诱导坏死的蛋白归为一组,可能保留诱导宿主坏死的能力。该物种显示出大量的次生代谢物(SM)簇,有47个SM簇。该物种基因组的约60%由重复元件组成,这一比例明显高于其他真菌。转座元件(TE)数量的这些差异可能解释了为什么该物种在分析的真菌中拥有最大的基因组之一。其基因组的很大一部分由反转录元件组成,特别是 超家族,它占基因组的22%,占重复元件的40%。基因组图谱显示受RIP影响的基因组比例高达54.77%,表明该物种内存在大量的RIP活性。这种菜豆种植中的重要病原体的高质量基因组将支持未来对该病理系统的研究,促进对真菌与其宿主之间相互作用的更深入理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c451/11518743/33619748e5ff/ffunb-05-1459229-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验