Suppr超能文献

基于深度学习、影像组学和临床的融合模型预测克罗恩病患者对英夫利昔单抗的反应:一项多中心回顾性研究

Deep-Learning, Radiomics and Clinic Based Fusion Models for Predicting Response to Infliximab in Crohn's Disease Patients: A Multicentre, Retrospective Study.

作者信息

Cai Weimin, Wu Xiao, Guo Kun, Chen Yongxian, Shi Yubo, Lin Xinran

机构信息

Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.

Department of Cardiology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, People's Republic of China.

出版信息

J Inflamm Res. 2024 Oct 25;17:7639-7651. doi: 10.2147/JIR.S484485. eCollection 2024.

Abstract

BACKGROUND

Accurate prediction of treatment response in Crohn's disease (CD) patients undergoing infliximab (IFX) therapy is essential for clinical decision-making. Our goal was to compare the performance of the clinical characteristics, radiomics and deep learning model from computed tomography enterography (CTE) for identifying individuals at high risk of IFX treatment failure.

METHODS

This retrospective study enrolled 263 CD patients from three medical centers between 2017 and 2023 patients received CTE examinations within 1 month before IFX commencement. A training cohort was recruited from center 1 (n=166), while test cohort from centers 2 and 3 (n=97). The deep learning model and radiomics were constructed based on CTE images of lesion. The clinical model was developed using clinical characteristics. Two fusion methods were used to create fusion model: the feature-based early fusion model and the decision-based late fusion model. The performances of the predictive models were evaluated.

RESULTS

The early fusion model achieved the highest area under characteristics curve (AUC) (0.85-0.91) among all patient cohorts, significantly outperforming deep learning model (AUC=0.72-0.82, p=0.06-0.03, Delong test) and radiomics model (AUC=0.72-0.78, p=0.06-0.01). Compared to early fusion model, the AUC values for the clinical and late fusion models were 0.71-0.91 (p=0.01-0.41), and 0.81-0.88 (p=0.49-0.37) in the test and training set, respectively. Moreover, the early fusion had the lowest value of Brier's score 0.15-0.12 in all patient set.

CONCLUSION

The early fusion model, which integrates deep learning, radiomics, and clinical data, can be utilized to predict the response to IFX treatment in CD patients and illustrated clinical decision-making utility.

摘要

背景

准确预测接受英夫利昔单抗(IFX)治疗的克罗恩病(CD)患者的治疗反应对于临床决策至关重要。我们的目标是比较临床特征、基于计算机断层扫描小肠造影(CTE)的放射组学和深度学习模型在识别IFX治疗失败高风险个体方面的性能。

方法

这项回顾性研究纳入了2017年至2023年间来自三个医疗中心的263例CD患者,患者在开始使用IFX前1个月内接受了CTE检查。训练队列从中心1招募(n = 166),而测试队列来自中心2和3(n = 97)。基于病变的CTE图像构建深度学习模型和放射组学模型。使用临床特征开发临床模型。采用两种融合方法创建融合模型:基于特征的早期融合模型和基于决策的晚期融合模型。评估预测模型的性能。

结果

在所有患者队列中,早期融合模型在特征曲线下面积(AUC)方面达到最高(0.85 - 0.91),显著优于深度学习模型(AUC = 0.72 - 0.82,p = 0.06 - 0.03,德龙检验)和放射组学模型(AUC = 0.72 - 0.78,p = 0.06 - 0.01)。与早期融合模型相比,临床模型和晚期融合模型在测试集和训练集中的AUC值分别为0.71 - 0.91(p = 0.01 - 0.41)和0.81 - 0.88(p = 0.49 - 0.37)。此外,早期融合在所有患者组中的布里尔评分最低,为0.15 - 0.12。

结论

整合深度学习、放射组学和临床数据的早期融合模型可用于预测CD患者对IFX治疗的反应,并具有临床决策实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f002/11520730/7cce0a8c93c7/JIR-17-7639-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验