Department of Gastrointestinal Surgery, The Affiliated Hospital of Qingdao University, Jiangsu Road 16#, Qingdao, Shandong 266400, People's Republic of China.
Institute of Translational Medicine, Zhejiang University, Hangzhou, ZJ, China.
Acad Radiol. 2023 Sep;30 Suppl 1:S207-S219. doi: 10.1016/j.acra.2023.03.023. Epub 2023 May 5.
To investigate the feasibility of integrating radiomics and morphological features based on computed tomography enterography (CTE) for developing a noninvasive grading model for mucosal activity and surgery risk of Crohn's disease (CD) patients.
A total of 167 patients from three centers were enrolled. Radiomics and image morphological features were extracted to quantify segmental and global simple endoscopic score for Crohn's disease (SES-CD). An image-fusion-based support vector machine (SVM) classifier was used for grading SES-CD and identifying moderate-to-severe SES-CD. The performance of the predictive model was assessed using the area under the receiver operating characteristic curve (AUC). A multiparametric model was developed to predict surgical progression in CD patients by combining sum-image scores and clinical data.
The AUC values of the multicategorical segmental SES-CD fusion radiomic model based on a combination of luminal and mesenteric radiomics were 0.828 and 0.709 in training and validation cohorts. The image fusion model integrating the fusion radiomics and morphological features could accurately distinguish bowel segments with moderate-to-severe SES-CD in both the training cohort (AUC = 0.847, 95% confidence interval (CI): 0.784-0.902) and the validation cohort (AUC = 0.896, 95% CI: 0.812-0.960). A predictive nomogram for interval surgery was developed based on multivariable cox analysis.
This study demonstrated the feasibility of integrating lumen and mesentery radiomic features to develop a promising noninvasive grading model for mucosal activity of CD. In combination with clinical data, the fusion-image score may yield an accurate prognostic model for time to surgery.
本研究旨在探索基于 CT 肠造影(CTE)的影像组学与形态学特征相结合,构建克罗恩病(CD)患者黏膜活动度和手术风险无创分级模型的可行性。
本研究纳入了来自三个中心的 167 名患者。提取影像组学和形态学特征,定量评估节段性和全段简单内镜评分克罗恩病(SES-CD)。采用基于图像融合的支持向量机(SVM)分类器对 SES-CD 进行分级,并识别中重度 SES-CD。采用受试者工作特征曲线下面积(AUC)评估预测模型的性能。通过联合总和图像评分和临床数据,建立预测 CD 患者手术进展的多参数模型。
基于肠腔和肠系膜影像组学融合的多分类节段 SES-CD 融合影像组学模型在训练组和验证组的 AUC 值分别为 0.828 和 0.709。融合影像组学和形态学特征的图像融合模型能够准确区分训练组(AUC=0.847,95%置信区间(CI):0.784-0.902)和验证组(AUC=0.896,95%CI:0.812-0.960)中中重度 SES-CD 的肠段。基于多变量 Cox 分析,建立了用于预测间隔手术的预测列线图。
本研究表明,融合肠腔和肠系膜影像组学特征构建 CD 黏膜活动度无创分级模型具有可行性。融合图像评分与临床数据相结合,可能为手术时间提供准确的预后模型。