Suppr超能文献

溶液法制备的单层分子晶体:从精确制备到先进应用

Solution-Processed Monolayer Molecular Crystals: From Precise Preparation to Advanced Applications.

作者信息

Zhang Jing, Guo Jing, Zhang Hantang, Liu Jie, You Sheng-Yong, Jiang Lang

机构信息

School of Chemistry and Materials Science, Shanxi Normal University, Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, Taiyuan 031000, China.

Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

Precis Chem. 2024 Apr 25;2(8):380-397. doi: 10.1021/prechem.3c00124. eCollection 2024 Aug 26.

Abstract

Emerging monolayer molecular crystals (MMCs) have become prosperous in recent decades due to their numerous advantages. First, downsizing the active layer thickness to monolayer in organic field-effect transistors (OFETs) is beneficial to elucidate the intrinsic charge-transport behavior. Next, the ultrathin conducting channel can reduce bulk injection resistance to extract mobility accurately. Then, direct exposure of the conducting channel can enhance the sensing performance. Finally, MMCs combine the merits of ultrathin thickness and high crystallization, which will improve the optoelectronic performance and realize complex device architectures for future advanced optoelectronic applications. In this Review, recent research progress in precise preparations and advanced applications of solution-processed MMCs are summarized. We present the current challenges related to MMCs with specific structures and desired performances, and an outlook regarding their application in next-generation integrated organic optoelectronics is provided.

摘要

近几十年来,新兴的单层分子晶体(MMCs)因其众多优点而蓬勃发展。首先,在有机场效应晶体管(OFETs)中将有源层厚度缩小到单层有利于阐明本征电荷传输行为。其次,超薄导电通道可以降低体注入电阻,从而准确提取迁移率。然后,导电通道的直接暴露可以增强传感性能。最后,MMCs兼具超薄厚度和高结晶度的优点,这将改善光电性能,并为未来先进的光电应用实现复杂的器件架构。在本综述中,总结了溶液法制备的MMCs在精确制备和先进应用方面的最新研究进展。我们提出了与具有特定结构和期望性能的MMCs相关的当前挑战,并展望了它们在下一代集成有机光电子学中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dd76/11503917/98eb74f5a6e3/pc3c00124_0001.jpg

相似文献

1
Solution-Processed Monolayer Molecular Crystals: From Precise Preparation to Advanced Applications.
Precis Chem. 2024 Apr 25;2(8):380-397. doi: 10.1021/prechem.3c00124. eCollection 2024 Aug 26.
2
Toward Ultrathin: Advances in Solution-Processed Organic Semiconductor Transistors.
ACS Appl Mater Interfaces. 2024 Nov 13;16(45):61530-61550. doi: 10.1021/acsami.4c11824. Epub 2024 Oct 31.
3
Low-Dimensional Organic Crystals: From Precise Synthesis to Advanced Applications.
Small. 2022 Nov;18(44):e2203961. doi: 10.1002/smll.202203961. Epub 2022 Sep 4.
4
Enabling Multifunctional Organic Transistors with Fine-Tuned Charge Transport.
Acc Chem Res. 2019 Apr 16;52(4):1113-1124. doi: 10.1021/acs.accounts.9b00031. Epub 2019 Mar 25.
5
Organic Semiconductor Single Crystal Arrays: Preparation and Applications.
Adv Sci (Weinh). 2023 May;10(15):e2300483. doi: 10.1002/advs.202300483. Epub 2023 Mar 26.
6
Enhancing the Uniformity of Organic Field-Effect Transistors by a Single-Crystalline Layer-Controlled Active Channel.
Adv Mater. 2023 Dec;35(52):e2304736. doi: 10.1002/adma.202304736. Epub 2023 Nov 20.
7
Monolayer Two-dimensional Molecular Crystals for an Ultrasensitive OFET-based Chemical Sensor.
Angew Chem Int Ed Engl. 2020 Mar 9;59(11):4380-4384. doi: 10.1002/anie.201916397. Epub 2020 Jan 29.
8
Organic Semiconductor Crystal Engineering for High-Resolution Layer-Controlled 2D Crystal Arrays.
Adv Mater. 2022 Jun;34(22):e2104166. doi: 10.1002/adma.202104166. Epub 2021 Aug 20.
9
Precise Patterning of Organic Semiconductor Crystals for Integrated Device Applications.
Small. 2019 Jul;15(27):e1900332. doi: 10.1002/smll.201900332. Epub 2019 Apr 16.
10
Capillary-Confinement Crystallization for Monolayer Molecular Crystal Arrays.
Adv Mater. 2022 Feb;34(7):e2107574. doi: 10.1002/adma.202107574. Epub 2022 Jan 2.

引用本文的文献

本文引用的文献

1
Electrochemical molecular intercalation and exfoliation of solution-processable two-dimensional crystals.
Nat Protoc. 2023 Sep;18(9):2814-2837. doi: 10.1038/s41596-023-00865-0. Epub 2023 Jul 31.
2
Monolayer molecular crystals and devices.
Sci Bull (Beijing). 2023 Jul 30;68(14):1474-1477. doi: 10.1016/j.scib.2023.06.026. Epub 2023 Jun 28.
3
Organic Semiconductor Single Crystal Arrays: Preparation and Applications.
Adv Sci (Weinh). 2023 May;10(15):e2300483. doi: 10.1002/advs.202300483. Epub 2023 Mar 26.
4
Dry Lithography Patterning of Monolayer Flexible Field Effect Transistors by 2D Mica Stamping.
Adv Mater. 2023 May;35(20):e2211600. doi: 10.1002/adma.202211600. Epub 2023 Mar 30.
5
2D Organic Materials: Status and Challenges.
Adv Sci (Weinh). 2023 Mar;10(7):e2203889. doi: 10.1002/advs.202203889. Epub 2023 Jan 22.
8
Capillary-Confinement Crystallization for Monolayer Molecular Crystal Arrays.
Adv Mater. 2022 Feb;34(7):e2107574. doi: 10.1002/adma.202107574. Epub 2022 Jan 2.
9
Organic Semiconductor Crystal Engineering for High-Resolution Layer-Controlled 2D Crystal Arrays.
Adv Mater. 2022 Jun;34(22):e2104166. doi: 10.1002/adma.202104166. Epub 2021 Aug 20.
10
Sub-5 nm single crystalline organic p-n heterojunctions.
Nat Commun. 2021 May 13;12(1):2774. doi: 10.1038/s41467-021-23066-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验