Mannekote Amogh, Davies Adam, Pinto Juan D, Zhang Shan, Olds Daniel, Schroeder Noah L, Lehman Blair, Zapata-Rivera Diego, Zhai ChengXiang
Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, United States.
Department of Computer Science, University of Illinois Urbana-Champaign, Urbana, IL, United States.
Front Artif Intell. 2024 Oct 15;7:1460364. doi: 10.3389/frai.2024.1460364. eCollection 2024.
In recent years, large language models (LLMs) have seen rapid advancement and adoption, and are increasingly being used in educational contexts. In this perspective article, we explore the open challenge of leveraging LLMs to create personalized learning environments that support the "whole learner" by modeling and adapting to both cognitive and non-cognitive characteristics. We identify three key challenges toward this vision: (1) improving the interpretability of LLMs' representations of whole learners, (2) implementing adaptive technologies that can leverage such representations to provide tailored pedagogical support, and (3) authoring and evaluating LLM-based educational agents. For interpretability, we discuss approaches for explaining LLM behaviors in terms of their internal representations of learners; for adaptation, we examine how LLMs can be used to provide context-aware feedback and scaffold non-cognitive skills through natural language interactions; and for authoring, we highlight the opportunities and challenges involved in using natural language instructions to specify behaviors of educational agents. Addressing these challenges will enable personalized AI tutors that can enhance learning by accounting for each student's unique background, abilities, motivations, and socioemotional needs.
近年来,大语言模型(LLMs)取得了迅速的发展并得到广泛应用,越来越多地被用于教育领域。在这篇观点文章中,我们探讨了利用大语言模型创建个性化学习环境这一开放挑战,该环境通过对认知和非认知特征进行建模和适应来支持“全人学习者”。我们确定了实现这一愿景的三个关键挑战:(1)提高大语言模型对全人学习者表征的可解释性;(2)实施能够利用此类表征提供量身定制的教学支持的自适应技术;(3)编写和评估基于大语言模型的教育智能体。对于可解释性,我们讨论了根据大语言模型对学习者的内部表征来解释其行为的方法;对于适应性,我们研究了如何利用大语言模型通过自然语言交互提供情境感知反馈并培养非认知技能;对于编写,我们强调了使用自然语言指令来指定教育智能体行为所涉及的机遇和挑战。应对这些挑战将催生个性化人工智能导师,它们能够通过考虑每个学生独特的背景、能力、动机和社会情感需求来提高学习效果。