Suppr超能文献

对脑膜炎球菌携带菌株和疾病分离株进行高通量表型到基因型检测,可检测出与疾病相关表型特征的遗传决定因素。

High-throughput phenotype-to-genotype testing of meningococcal carriage and disease isolates detects genetic determinants of disease-relevant phenotypic traits.

作者信息

Farzand Robeena, Kimani Mercy W, Mourkas Evangelos, Jama Abdullahi, Clark Jack L, De Ste Croix Megan, Monteith William M, Lucidarme Jay, Oldfield Neil J, Turner David P J, Borrow Ray, Martinez-Pomares Luisa, Sheppard Samuel K, Bayliss Christopher D

机构信息

Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.

Department of Biology, University of Oxford, Oxford, United Kingdom.

出版信息

mBio. 2024 Dec 11;15(12):e0305924. doi: 10.1128/mbio.03059-24. Epub 2024 Oct 30.

Abstract

Genome-wide association studies (GWAS) with binary or single phenotype data have successfully identified disease-associated genotypes and determinants of antimicrobial resistance. We describe a novel phenotype-to-genotype approach for a major bacterial pathogen that involves simultaneously testing for associations among multiple disease-related phenotypes and linkages between phenotypic variation and genetic determinants. High-throughput assays quantified variation among 163 serogroup W ST-11 clonal complex isolates for 11 phenotypic traits. A comparison of carriage and two disease subgroups detected significant differences between groups for eight phenotypic traits. Candidate genotypic testing indicated that indels in , a capsular biosynthesis gene, were associated with reduced survival in antibody-depleted heat-inactivated serum. GWAS testing detected 341 significant genetic variants (3 single-nucleotide polymorphisms and 338 unitigs) across all traits except serum bactericidal antibody-depleted assays. Growth traits were associated with variants of capsular biosynthesis genes, carbonic anhydrase, and an iron-uptake system while adhesion-linked variation was in , and . Multiple phase variation states or combinatorial phasotypes were associated with significant differences in multiple phenotypes. Controlling for group effects through regression and recursive random forest approaches detected group-independent effects for with biofilm formation and with a growth trait. Through random forest testing, nine phenotypes were weakly predictive of MenW:cc11 sub-lineage, original or 2013, for disease isolates while three characteristics separated carriage and disease isolates with >80% accuracy. This study demonstrates the power of combining high-throughput phenotypic testing of pathogenically relevant isolate collections with genomics for identifying genetic determinants of specific disease-relevant phenotypes and the pathobiology of microbial pathogens.IMPORTANCENext-generation sequencing technologies have led to the creation of extensive microbial genome sequence databases for several bacterial pathogens. Mining of these databases is now imperative for unlocking the maximum benefits of these resources. We describe a high-throughput methodology for detecting associations between phenotypic variation in multiple disease-relevant traits and a range of genetic determinants for , a major causative agent of meningitis and septicemia. Phenotypic variation in 11 disease-related traits was determined for 163 isolates of the hypervirulent ST-11 lineage and linked to specific single-nucleotide polymorphisms, short sequence variants, and phase variation states. Application of machine learning algorithms to our data outputs identified combinatorial phenotypic traits and genetic variants predictive of a disease association. This approach overcomes the limitations of generic meta-data, such as disease versus carriage, and provides an avenue to explore the multi-faceted nature of bacterial disease, carriage, and transmissibility traits.

摘要

针对二元或单表型数据的全基因组关联研究(GWAS)已成功识别出与疾病相关的基因型以及抗菌药物耐药性的决定因素。我们描述了一种针对主要细菌病原体的新型表型到基因型的方法,该方法涉及同时检测多种疾病相关表型之间的关联以及表型变异与遗传决定因素之间的联系。高通量检测对163株血清群W ST-11克隆复合体分离株的11个表型特征的变异进行了量化。携带状态与两个疾病亚组的比较检测出8个表型特征在组间存在显著差异。候选基因型检测表明,荚膜生物合成基因中的插入缺失与在抗体耗尽的热灭活血清中存活率降低有关。GWAS检测在除血清杀菌抗体耗尽检测外的所有特征中检测到341个显著的遗传变异(3个单核苷酸多态性和338个单倍型)。生长特征与荚膜生物合成基因、碳酸酐酶和铁摄取系统的变异有关,而与黏附相关的变异存在于、和中。多个相变状态或组合相型与多种表型的显著差异相关。通过回归和递归随机森林方法控制组效应,检测到与生物膜形成相关的和与生长特征相关的组独立效应。通过随机森林检测,9个表型对疾病分离株的MenW:cc11亚谱系、原始或2013年具有较弱的预测能力,而3个特征以>80%的准确率区分了携带状态和疾病分离株。本研究证明了将致病性相关分离株集合的高通量表型检测与基因组学相结合,用于识别特定疾病相关表型的遗传决定因素和微生物病原体病理生物学的能力。

重要性

下一代测序技术已为多种细菌病原体创建了广泛的微生物基因组序列数据库。现在迫切需要挖掘这些数据库,以充分利用这些资源的最大效益。我们描述了一种高通量方法,用于检测多种疾病相关性状的表型变异与脑膜炎和败血症的主要病原体的一系列遗传决定因素之间的关联。对163株高毒力ST-11谱系分离株的11个疾病相关性状的表型变异进行了测定,并将其与特定的单核苷酸多态性、短序列变异和相变状态联系起来。将机器学习算法应用于我们的数据输出,识别出了预测疾病关联的组合表型性状和遗传变异。这种方法克服了一般元数据(如疾病与携带状态)的局限性,并为探索细菌疾病、携带状态和传播性状的多方面性质提供了一条途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d8f6/11633189/0959701c127e/mbio.03059-24.f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验