Salducci Clément, Bidel Yannick, Cadoret Malo, Darmon Sarah, Zahzam Nassim, Bonnin Alexis, Schwartz Sylvain, Blanchard Cédric, Bresson Alexandre
DPHY, ONERA, Université Paris-Saclay, F-91123 Palaiseau, France.
LCM-CNAM, 61 rue de Landy, 93210 La Plaine Saint Denis, France.
Sci Adv. 2024 Nov;10(44):eadq4498. doi: 10.1126/sciadv.adq4498. Epub 2024 Oct 30.
Accurate and stable measurement of inertial quantities is essential in geophysics, geodesy, fundamental physics, and inertial navigation. Here, we present an architecture for a compact cold-atom accelerometer-gyroscope based on a magnetically launched atom interferometer. Characterizing the launching technique, we demonstrate 700-parts per million gyroscope scale factor stability over 1 day, while acceleration and rotation rate bias stabilities of 7 × 10 meters per second squared and 4 × 10 radians per second are reached after 2 days of integration of the cold-atom sensor. Hybridizing it with a classical accelerometer and gyroscope, we correct their drift and bias to achieve respective 100-fold and 3-fold increase on the stability of the hybridized sensor compared to the classical ones. Compared to a state-of-the-art atomic gyroscope, the simplicity and scalability of our launching technique make this architecture easily extendable to a compact full six-axis inertial measurement unit, providing a pathway toward autonomous positioning and orientation using cold-atom sensors.
在地球物理学、大地测量学、基础物理学和惯性导航中,准确且稳定地测量惯性量至关重要。在此,我们展示了一种基于磁发射原子干涉仪的紧凑型冷原子加速度计 - 陀螺仪架构。通过对发射技术进行表征,我们证明了陀螺仪比例因子在一天内的稳定性达到百万分之700,而在冷原子传感器积分两天后,加速度和旋转速率偏差稳定性分别达到7×10米每二次方秒和4×10弧度每秒。将其与传统加速度计和陀螺仪进行混合,我们校正了它们的漂移和偏差,使混合传感器的稳定性相比传统传感器分别提高了100倍和3倍。与最先进 的原子陀螺仪相比,我们发射技术的简单性和可扩展性使该架构易于扩展为紧凑型全六轴惯性测量单元,为使用冷原子传感器实现自主定位和定向提供了一条途径。