Department of Biochemistry, Brandeis University, Waltham, MA 02453.
HHMI, Waltham, MA 02453.
Proc Natl Acad Sci U S A. 2024 Nov 5;121(45):e2412293121. doi: 10.1073/pnas.2412293121. Epub 2024 Oct 30.
How can a single protein domain encode a conformational landscape with multiple stably folded states, and how do those states interconvert? Here, we use real-time and relaxation-dispersion NMR to characterize the conformational landscape of the circadian rhythm protein KaiB from . Unique among known natural metamorphic proteins, this KaiB variant spontaneously interconverts between two monomeric states: the "Ground" and "Fold-switched" (FS) states. KaiB in its FS state interacts with multiple binding partners, including the central KaiC protein, to regulate circadian rhythms. We find that KaiB itself takes hours to interconvert between the Ground and FS state, underscoring the ability of a single-sequence to encode the slow process needed for function. We reveal the rate-limiting step between the Ground and FS state is the isomerization of three prolines in the fold-switching region by demonstrating interconversion acceleration by the prolyl isomerase Cyclophilin A. The interconversion proceeds through a "partially disordered" (PD) state, where the C-terminal half becomes disordered while the N-terminal half remains stably folded. We found two additional properties of KaiB's landscape. First, the Ground state experiences cold denaturation: At 4 °C, the PD state becomes the majorly populated state. Second, the Ground state exchanges with a fourth state, the "Enigma" state, on the millisecond-timescale. We combine AlphaFold2-based predictions and NMR chemical shift predictions to predict this Enigma state is a beta-strand register shift that relieves buried charged residues, and support this structure experimentally. These results provide mechanistic insight into how evolution can design a single-sequence that achieves specific timing needed for its function.
单一蛋白结构域如何编码具有多个稳定折叠状态的构象景观,这些状态又是如何相互转换的?在这里,我们使用实时和弛豫分散 NMR 来描述生物钟蛋白 KaiB 的构象景观。与已知的天然变形蛋白不同,这种 KaiB 变体自发地在两种单体状态之间转换:“Ground”和“Fold-switched”(FS)状态。处于 FS 状态的 KaiB 与多个结合伙伴相互作用,包括中央 KaiC 蛋白,以调节生物钟节律。我们发现 KaiB 本身需要数小时才能在 Ground 和 FS 状态之间转换,这凸显了单个序列编码功能所需的缓慢过程的能力。我们发现,在 Ground 和 FS 状态之间的限速步骤是折叠转换区域中三个脯氨酸的异构化,通过证明脯氨酰异构酶 Cyclophilin A 的加速转换来证明这一点。转换过程通过“部分无序”(PD)状态进行,其中 C 端半部分变得无序,而 N 端半部分仍然稳定折叠。我们发现 KaiB 景观的另外两个特性。首先,Ground 状态会经历冷变性:在 4°C 时,PD 状态成为主要的优势状态。其次,Ground 状态与第四个状态“Enigma”状态在毫秒时间尺度上进行交换。我们结合基于 AlphaFold2 的预测和 NMR 化学位移预测来预测这个 Enigma 状态是一个β-链寄存器移位,它可以缓解埋藏的带电残基,并通过实验支持这种结构。这些结果提供了对进化如何设计单个序列以实现其功能所需的特定时间的机制见解。