Suppr超能文献

利用人工智能支持基于突变测试的知情决策。

Using Artificial Intelligence to Support Informed Decision-Making on Mutation Testing.

机构信息

Pfizer Inc, New York, NY.

Digital Science, London, United Kingdom.

出版信息

JCO Precis Oncol. 2024 Oct;8:e2300685. doi: 10.1200/PO.23.00685. Epub 2024 Oct 30.

Abstract

PURPOSE

Precision oncology relies on accurate and interpretable reporting of testing and mutation rates. Focusing on the mutations in advanced colorectal carcinoma, non-small-cell lung carcinoma, and cutaneous melanoma, we developed a platform displaying testing and mutation rates reported in the literature, which we annotated using an artificial intelligence (AI) and natural language processing (NLP) pipeline.

METHODS

Using AI, we identified publications that likely reported a testing or mutation rate, filtered publications for cancer type, and identified sentences that likely reported rates. Rates and covariates were subsequently manually curated by three experts. The AI performance was evaluated using precision and recall metrics. We used an interactive platform to explore and present the annotated testing and mutation rates by certain study characteristics.

RESULTS

The interactive dashboard, accessible at the BRAF dimensions website, enables users to filter mutation and testing rates with relevant options (eg, country of study, study type, mutation type) and to visualize annotated rates. The AI pipeline demonstrated excellent filtering performance (>90% precision and recall for all target cancer types) and moderate performance for sentence classification (53%-99% precision; ≥75% recall). The manual annotation of testing and mutation rates revealed inter-rater disagreement (testing rate, 19%; mutation rate, 70%), indicating unclear or nonstandard reporting of rates in some publications.

CONCLUSION

Our AI-driven NLP pipeline demonstrated the potential for annotating biomarker testing and mutation rates. The difficulties we encountered highlight the need for more advanced AI-powered literature searching and data extraction, and more consistent reporting of testing rates. These improvements would reduce the risk of misinterpretation or misunderstanding of testing and mutation rates by AI-based technologies and the health care community, with beneficial impacts on clinical decision-making, research, and trial design.

摘要

目的

精准肿瘤学依赖于对检测和突变率的准确和可解释的报告。本研究聚焦于晚期结直肠癌、非小细胞肺癌和皮肤黑色素瘤中的 突变,开发了一个展示文献中报告的检测和突变率的平台,并使用人工智能(AI)和自然语言处理(NLP)管道对其进行注释。

方法

使用 AI,我们确定了可能报告检测或突变率的出版物,筛选了癌症类型的出版物,并确定了可能报告率的句子。随后,由三名专家对率和协变量进行手动整理。使用精确率和召回率指标评估 AI 的性能。我们使用一个交互式平台,根据某些研究特征探索和呈现注释的检测和突变率。

结果

可在 BRAF dimensions 网站上访问的交互式仪表板,使用户能够使用相关选项(例如,研究国家、研究类型、突变类型)过滤突变和检测率,并可视化注释的率。AI 管道对所有目标癌症类型均表现出出色的过滤性能(>90%的精度和召回率),对句子分类的性能中等(53%-99%的精度;≥75%的召回率)。检测和突变率的手动注释显示出评级者之间的不一致(检测率,19%;突变率,70%),表明一些出版物中对率的报告不明确或不标准。

结论

我们的 AI 驱动的 NLP 管道展示了注释生物标志物检测和突变率的潜力。我们遇到的困难突出表明需要更先进的 AI 驱动的文献搜索和数据提取,以及更一致的检测率报告。这些改进将降低基于 AI 的技术和医疗保健界对检测和突变率的误解或误解的风险,对临床决策、研究和试验设计产生有益影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验