Suppr超能文献

在激酶抑制剂开发中利用人工智能和机器学习:进展、挑战及未来前景。

Leveraging artificial intelligence and machine learning in kinase inhibitor development: advances, challenges, and future prospects.

作者信息

Elgawish Mohamed S, Almatary Aya M, Zaitone Sawsan A, Salem Mohamed S H

机构信息

Medicinal Chemistry Department, Faculty of Pharmacy, Suez Canal University Ismailia 41522 Egypt

Chemistry Department, Korea University Seoul 02841 Korea Republic.

出版信息

RSC Med Chem. 2025 Aug 12. doi: 10.1039/d5md00494b.

Abstract

Protein kinases are central regulators of cell signaling and play pivotal roles in a wide array of diseases, most notably cancer and autoimmune disorders. The clinical success of kinase inhibitors-such as imatinib and osimertinib-has firmly established kinases as valuable drug targets. However, the development of selective, potent inhibitors remains challenging due to the conserved nature of the ATP-binding site, off-target effects, resistance mutations, and patient-specific variability. Recent advances in artificial intelligence (AI) and machine learning (ML) offer transformative solutions to these obstacles across the drug discovery pipeline. This review explores how AI/ML methods, including deep learning, graph neural networks, and generative models, are revolutionizing the design, optimization, and repurposing of kinase inhibitors. We detail applications in target identification, virtual screening, structure-activity relationship modeling, resistance prediction, and clinical trial design. Representative case studies-such as AI-optimized BTK and EGFR inhibitors-highlight real-world impact. We also examine current limitations, including data sparsity, model interpretability, and translational gaps between and experimental results. Finally, we discuss emerging directions such as federated learning, personalized kinase inhibitors, and AI-enabled combination therapies. By integrating computational innovation with medicinal chemistry, AI/ML holds immense promise to accelerate and refine the next generation of kinase-targeted therapeutics.

摘要

蛋白激酶是细胞信号传导的核心调节因子,在多种疾病中发挥关键作用,尤其是癌症和自身免疫性疾病。激酶抑制剂(如伊马替尼和奥希替尼)在临床上的成功,已将激酶稳固地确立为有价值的药物靶点。然而,由于ATP结合位点的保守性、脱靶效应、耐药性突变以及患者特异性差异,开发选择性强、效力高的抑制剂仍然具有挑战性。人工智能(AI)和机器学习(ML)的最新进展为药物研发流程中的这些障碍提供了变革性解决方案。本综述探讨了AI/ML方法,包括深度学习、图神经网络和生成模型,如何正在彻底改变激酶抑制剂的设计、优化和重新利用。我们详细介绍了在靶点识别、虚拟筛选、构效关系建模、耐药性预测和临床试验设计中的应用。代表性案例研究,如AI优化的BTK和EGFR抑制剂,突出了实际影响。我们还研究了当前的局限性,包括数据稀疏性、模型可解释性以及理论与实验结果之间的转化差距。最后,我们讨论了新兴方向,如联邦学习、个性化激酶抑制剂和AI驱动的联合疗法。通过将计算创新与药物化学相结合,AI/ML有望极大地加速和完善下一代激酶靶向治疗药物。

相似文献

2
AI-Driven Antimicrobial Peptide Discovery: Mining and Generation.人工智能驱动的抗菌肽发现:挖掘与生成
Acc Chem Res. 2025 Jun 17;58(12):1831-1846. doi: 10.1021/acs.accounts.0c00594. Epub 2025 Jun 3.
4
The Use of AI for Phenotype-Genotype Mapping.人工智能在表型-基因型映射中的应用。
Methods Mol Biol. 2025;2952:369-410. doi: 10.1007/978-1-0716-4690-8_21.

本文引用的文献

6
Docking-Informed Machine Learning for Kinome-wide Affinity Prediction.基于对接信息的机器学习用于全激酶组亲和力预测
J Chem Inf Model. 2024 Dec 23;64(24):9196-9204. doi: 10.1021/acs.jcim.4c01260. Epub 2024 Dec 10.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验