Suppr超能文献

基于强化学习的自主感知机器人鲸鱼聚会框架。

Reinforcement learning-based framework for whale rendezvous via autonomous sensing robots.

机构信息

Project CETI, New York, NY, USA.

John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA.

出版信息

Sci Robot. 2024 Oct 30;9(95):eadn7299. doi: 10.1126/scirobotics.adn7299.

Abstract

Rendezvous with sperm whales for biological observations is made challenging by their prolonged dive patterns. Here, we propose an algorithmic framework that codevelops multiagent reinforcement learning-based routing (autonomy module) and synthetic aperture radar-based very high frequency (VHF) signal-based bearing estimation (sensing module) for maximizing rendezvous opportunities of autonomous robots with sperm whales. The sensing module is compatible with low-energy VHF tags commonly used for tracking wildlife. The autonomy module leverages in situ noisy bearing measurements of whale vocalizations, VHF tags, and whale dive behaviors to enable time-critical rendezvous of a robot team with multiple whales in simulation. We conducted experiments at sea in the native habitat of sperm whales using an "engineered whale"-a speedboat equipped with a VHF-emitting tag, emulating five distinct whale tracks, with different whale motions. The sensing module shows a median bearing error of 10.55° to the tag. Using bearing measurements to the engineered whale from an acoustic sensor and our sensing module, our autonomy module gives an aggregate rendezvous success rate of 81.31% for a 500-meter rendezvous distance using three robots in postprocessing. A second class of fielded experiments that used acoustic-only bearing measurements to three untagged sperm whales showed an aggregate rendezvous success rate of 68.68% for a 1000-meter rendezvous distance using two robots in postprocessing. We further validated these algorithms with several ablation studies using a sperm whale visual encounter dataset collected by marine biologists.

摘要

与抹香鲸进行生物观测的挑战性在于它们的长时间潜水模式。在这里,我们提出了一个算法框架,该框架结合了基于多智能体强化学习的路由(自主模块)和基于合成孔径雷达的甚高频(VHF)信号方位估计(感知模块),以最大程度地增加自主机器人与抹香鲸相遇的机会。感知模块与用于跟踪野生动物的常用低能量 VHF 标签兼容。自主模块利用鲸叫声、VHF 标签和鲸潜水行为的现场噪声方位测量值,使机器人团队能够在模拟中对多只鲸进行关键时间的相遇。我们在抹香鲸的自然栖息地进行了海上实验,使用一艘“工程鲸”-一艘配备 VHF 发射器标签的快艇,模拟了五个不同的鲸轨迹,具有不同的鲸运动。感知模块显示出对标签的中位数方位误差为 10.55°。使用声学传感器和我们的感知模块对工程鲸的方位测量值,我们的自主模块在事后处理中使用三个机器人的综合相遇成功率为 81.31%,相遇距离为 500 米。第二类现场实验使用声学方位测量值对三只未标记的抹香鲸进行了实验,使用两个机器人在事后处理中的综合相遇成功率为 68.68%,相遇距离为 1000 米。我们使用海洋生物学家收集的抹香鲸视觉相遇数据集进行了几项消融研究,进一步验证了这些算法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验