Chang Trenton, Nuppnau Mark, He Ying, Kocher Keith E, Valley Thomas S, Sjoding Michael W, Wiens Jenna
Division of Computer Science and Engineering, University of Michigan, Ann Arbor, Michigan, United States of America.
Division of Pulmonary and Critical Care, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, United States of America.
PLOS Glob Public Health. 2024 Oct 30;4(10):e0003555. doi: 10.1371/journal.pgph.0003555. eCollection 2024.
AI models are often trained using available laboratory test results. Racial differences in laboratory testing may bias AI models for clinical decision support, amplifying existing inequities. This study aims to measure the extent of racial differences in laboratory testing in adult emergency department (ED) visits. We conducted a retrospective 1:1 exact-matched cohort study of Black and White adult patients seen in the ED, matching on age, biological sex, chief complaint, and ED triage score, using ED visits at two U.S. teaching hospitals: Michigan Medicine, Ann Arbor, MI (U-M, 2015-2022), and Beth Israel Deaconess Medical Center, Boston, MA (BIDMC, 2011-2019). Post-matching, White patients had significantly higher testing rates than Black patients for complete blood count (BIDMC difference: 1.7%, 95% CI: 1.1% to 2.4%, U-M difference: 2.0%, 95% CI: 1.6% to 2.5%), metabolic panel (BIDMC: 1.5%, 95% CI: 0.9% to 2.1%, U-M: 1.9%, 95% CI: 1.4% to 2.4%), and blood culture (BIDMC: 0.9%, 95% CI: 0.5% to 1.2%, U-M: 0.7%, 95% CI: 0.4% to 1.1%). Black patients had significantly higher testing rates for troponin than White patients (BIDMC: -2.1%, 95% CI: -2.6% to -1.6%, U-M: -2.2%, 95% CI: -2.7% to -1.8%). The observed racial testing differences may impact AI models trained using available laboratory results. The findings also motivate further study of how such differences arise and how to mitigate potential impacts on AI models.
人工智能模型通常使用现有的实验室检测结果进行训练。实验室检测中的种族差异可能会使用于临床决策支持的人工智能模型产生偏差,加剧现有的不平等现象。本研究旨在衡量成人急诊科就诊时实验室检测中种族差异的程度。我们对在美国两家教学医院(密歇根大学安娜堡分校医学中心,密歇根州安娜堡,2015 - 2022年;贝斯以色列女执事医疗中心,马萨诸塞州波士顿,2011 - 2019年)急诊科就诊的黑人和白人成年患者进行了一项回顾性1:1精确匹配队列研究,匹配因素包括年龄、生物学性别、主要症状和急诊科分诊评分。匹配后,白人患者全血细胞计数(贝斯以色列女执事医疗中心差异:1.7%,95%置信区间:1.1%至2.4%;密歇根大学安娜堡分校差异:2.0%,95%置信区间:1.6%至2.5%)、代谢指标检测(贝斯以色列女执事医疗中心:1.5%,95%置信区间:0.9%至2.1%;密歇根大学安娜堡分校:1.9%,95%置信区间:1.4%至2.4%)和血培养(贝斯以色列女执事医疗中心:0.9%,95%置信区间:0.