Department of Ophthalmology, Shanghai East Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China.
State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, China.
Transl Vis Sci Technol. 2024 Oct 1;13(10):40. doi: 10.1167/tvst.13.10.40.
To develop and evaluate a new intraocular lens (IOL) formula based on Chinese eyes.
A training dataset of 709 eyes undergoing uneventful cataract surgery was used to train the algorithm for effective lens position estimation. The algorithm was then integrated with Gaussian optics to develop the new IOL formula (Jin-AI). From the same center, 177 eyes served as an internal test dataset. An independent dataset of 557 eyes served as an external test dataset. The standard deviation (SD) of prediction errors was compared among the Jin-AI formula, traditional third-generation formulas (SRK/T, Holladay 1, Hoffer Q), and newer generation formulas (Kane, Barrett Universal II [BUII], Hill-radial basis function [RBF] 3.0, and PEARL-DGS).
In the internal test dataset, the Jin-AI formula showed the lowest SD (0.25 D), followed by the BUII (0.31 D), Kane (0.33 D), and PEARL-DGS (0.33 D) formulas. In the external test dataset, the Jin-AI, Kane, and PEARL-DGS formulas had the lowest SD (0.38 D), followed by the BUII (0.39 D), Hill-RBF 3.0 (0.39 D), SRK/T (0.45 D), Holladay 1 (0.48 D), and Hoffer Q (0.48 D) formulas. The SD of the Jin-AI formula was significantly lower than the third-generation formulas and comparable to the four newer generation formulas. Predictive accuracy of the Jin-AI formula was similar to the newer generation formulas across all axial length, keratometry, and anterior chamber depth ranges.
The new formula has exhibited good performance in predicting postoperative refractions. Its overall predictive accuracy was better than the third-generation formulas and comparable to the newer generation ones.
The Jin-AI formula could be a reliable alternative for IOL power calculation in Chinese.
开发和评估一种基于中国人眼的新型人工晶状体(IOL)公式。
使用 709 只无并发症白内障手术眼的训练数据集来训练有效晶状体位置估计算法。然后,将该算法与高斯光学相结合,开发出新型 IOL 公式(Jin-AI)。来自同一中心的 177 只眼作为内部测试数据集。一个独立的 557 只眼数据集作为外部测试数据集。比较了 Jin-AI 公式、传统第三代公式(SRK/T、Holladay 1、Hoffer Q)和更新一代公式(Kane、Barrett 通用 II [BUII]、Hill-径向基函数 [RBF] 3.0 和 PEARL-DGS)之间的预测误差标准差(SD)。
在内部测试数据集中,Jin-AI 公式的 SD 最低(0.25 D),其次是 BUII(0.31 D)、Kane(0.33 D)和 PEARL-DGS(0.33 D)公式。在外部测试数据集中,Jin-AI、Kane 和 PEARL-DGS 公式的 SD 最低(0.38 D),其次是 BUII(0.39 D)、Hill-RBF 3.0(0.39 D)、SRK/T(0.45 D)、Holladay 1(0.48 D)和 Hoffer Q(0.48 D)公式。Jin-AI 公式的 SD 明显低于第三代公式,与四个更新一代公式相当。在所有眼轴、角膜曲率和前房深度范围内,Jin-AI 公式的预测准确性与更新一代公式相似。
新公式在预测术后屈光度方面表现出良好的性能。其整体预测准确性优于第三代公式,与更新一代公式相当。
曹佳玉