Suppr超能文献

开发一种基于网络的工具,利用临床、mRNA和肿瘤微环境特征及融合技术估计胶质母细胞瘤的个体化生存曲线。

Development of a web-based tool for estimating individualized survival curves in glioblastoma using clinical, mRNA, and tumor microenvironment features with fusion techniques.

作者信息

Zhao Zunlan, Shi Yujie, Chen Shouhang, Xu Yan, Fu Fangfang, Li Chong, Zhang Xiao, Li Ming, Li Xiqing

机构信息

Department of General Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.

Department of Pathology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, China.

出版信息

Clin Transl Oncol. 2025 May;27(5):2113-2126. doi: 10.1007/s12094-024-03739-3. Epub 2024 Oct 30.

Abstract

OBJECTIVE

Glioblastoma (GBM), one of the most common brain tumors, is known for its low survival rates and poor treatment responses. This study aims to create a robust predictive model that integrates multiple feature types, including clinical data, RNA expression, and tumor microenvironment data, using fusion techniques to enhance model performance.

METHODS

We obtained data from the SEER database to assess the impact of nine demographic and clinical features on the survival of 58,495 GBM patients and built predictive machine learning models. Additionally, mRNA expression data from 600 GBM patients from TCGA, CGGA, and GEO were analyzed. We used Cox regression and LASSO to create a gene signature, which was compared against 13 published signatures for accuracy. Twenty-one machine learning models were applied to predict survival at multiple time points. Finally, we integrated multiple feature types using fusion techniques and developed a Shiny app to provide survival predictions for GBM patients.

RESULTS

Using the SEER database, we constructed machine learning models based on nine clinical variables: age, gender, marital status, race, tumor site, laterality, surgery, chemotherapy, and radiation therapy. The best-performing model achieved AUC values of 0.775, 0.728, 0.692, and 0.683 for predicting survival at 6, 12, 18, and 24 months in the testing cohort. In the merged TCGA, CGGA, and GEO cohorts, we identified 11 genes to develop predictive models. These 11 genes outperformed 13 other published gene signatures in predicting the prognosis of GBM. When incorporating mRNA features, tumor microenvironment features, and clinical variables into the fusion models, the AUC values for predicting survival at 6, 12, 18, and 24 months were 0.641, 0.624, 0.655, and 0.637, respectively. A user-friendly tool for predicting the survival curve of individual GBM patients is available at https://zzubioinfo.shinyapps.io/mlGBM/ .

CONCLUSIONS

Our study provides a web-based tool that includes two modules: one for predicting survival curves using only clinical variables, and another that integrates multiple feature types for more comprehensive predictions.

摘要

目的

胶质母细胞瘤(GBM)是最常见的脑肿瘤之一,以其低生存率和较差的治疗反应而闻名。本研究旨在创建一个强大的预测模型,该模型整合多种特征类型,包括临床数据、RNA表达和肿瘤微环境数据,使用融合技术来提高模型性能。

方法

我们从监测、流行病学和最终结果(SEER)数据库获取数据,以评估9种人口统计学和临床特征对58495例GBM患者生存的影响,并建立预测性机器学习模型。此外,还分析了来自癌症基因组图谱(TCGA)、中国胶质瘤基因组图谱(CGGA)和基因表达综合数据库(GEO)的600例GBM患者的mRNA表达数据。我们使用Cox回归和套索回归创建一个基因特征,并将其与13个已发表的特征进行准确性比较。应用21种机器学习模型在多个时间点预测生存率。最后,我们使用融合技术整合多种特征类型,并开发了一个Shiny应用程序为GBM患者提供生存预测。

结果

利用SEER数据库,我们基于9个临床变量构建了机器学习模型:年龄、性别、婚姻状况、种族、肿瘤部位、肿瘤位置、手术、化疗和放疗。性能最佳的模型在测试队列中预测6、12、18和24个月生存率时的曲线下面积(AUC)值分别为0.775、0.728、0.692和0.683。在合并的TCGA、CGGA和GEO队列中,我们鉴定出11个基因来开发预测模型。这11个基因在预测GBM预后方面优于其他13个已发表的基因特征。将mRNA特征、肿瘤微环境特征和临床变量纳入融合模型时,预测6、12、18和24个月生存率的AUC值分别为0.641、0.624、0.655和0.637。可通过https://zzubioinfo.shinyapps.io/mlGBM/获取一个用于预测个体GBM患者生存曲线的用户友好工具。

结论

我们的研究提供了一个基于网络的工具,包括两个模块:一个仅使用临床变量预测生存曲线,另一个整合多种特征类型进行更全面的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验