Suppr超能文献

利用5基因CAF风险特征预测胶质母细胞瘤(GBM)的预后和免疫治疗反应

Predicting Prognosis and Immunotherapy Response in Glioblastoma (GBM) With a 5-Gene CAF-Risk Signature.

作者信息

He Haifeng, Yan Min, Ye Ke, Shi Rui, Tong Luqing, Zhang Shengxiang, Zhu Yu, Zhan Renya

机构信息

Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

出版信息

Cancer Rep (Hoboken). 2025 Apr;8(4):e70158. doi: 10.1002/cnr2.70158.

Abstract

BACKGROUND

Cancer-associated fibroblasts (CAF) represent significant constituents within the extracellular matrix (ECM) across a range of cancers. Nevertheless, there exists a scarcity of direct proof concerning the function of CAF in glioblastoma (GBM).

AIMS

This study endeavors to probe the participation of CAF in GBM by developing and validating a CAF-risk signature and exploring its correlation with immune infiltration and immunotherapy responsiveness.

METHODS AND RESULTS

To fulfill these objectives, mRNA expression profiles of GBM samples and their corresponding clinical data were retrieved from two databases. First, stromal CAF-associated genes were identified by weighted gene co-expression network analysis (WGCNA). This method constructs co-expression networks and pinpoints gene modules with similar expression patterns to detect relevant genes. Subsequently, a CAF-risk signature was established via univariate and LASSO Cox regression analyses. Thereafter, gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA) were carried out to investigate the underlying molecular mechanisms. The immune status was evaluated with several R packages, and the Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was utilized to assess the response to immunotherapy. Validation was performed using single-cell RNA sequencing (scRNA) datasets, the Cancer Cell Line Encyclopedia (CCLE), and the Human Protein Atlas (HPA). Eventually, a 5-gene (ITGA5, MMP14, FN1, COL5A1, and COL6A1) prognostic CAF model was constructed. Notably, immune infiltration analysis demonstrated a significant correlation between Treg, Macrophage, and CAF risk scores. Moreover, TIDE analysis suggested a decreased responsiveness to immunotherapy in high CAF-risk patients. In addition, GSEA showed significant enrichment of the transforming growth factor alpha (TGF-α), inflammatory response, and epithelial-mesenchymal transition (EMT) pathways in this subgroup. Finally, the validation through scRNA, CCLE, and HPA datasets confirmed these findings.

CONCLUSION

The 5-gene CAF-risk signature exhibited accurate prognostic predictions and efficiently evaluated clinical immunotherapy responses among GBM patients. These results offer robust evidence regarding the implication of CAF in GBM and underscore the potential clinical value of personalized anti-CAF therapies in conjunction with immunotherapy.

摘要

背景

癌症相关成纤维细胞(CAF)是多种癌症细胞外基质(ECM)的重要组成部分。然而,关于CAF在胶质母细胞瘤(GBM)中的功能,直接证据仍然匮乏。

目的

本研究旨在通过开发和验证CAF风险特征,并探索其与免疫浸润和免疫治疗反应性的相关性,来探究CAF在GBM中的作用。

方法与结果

为实现这些目标,从两个数据库中获取了GBM样本的mRNA表达谱及其相应的临床数据。首先,通过加权基因共表达网络分析(WGCNA)确定基质CAF相关基因。该方法构建共表达网络,并找出具有相似表达模式的基因模块以检测相关基因。随后,通过单变量和LASSO Cox回归分析建立CAF风险特征。此后,进行基因集富集分析(GSEA)和单样本基因集富集分析(ssGSEA)以研究潜在的分子机制。使用多个R包评估免疫状态,并利用肿瘤免疫功能障碍和排除(TIDE)算法评估对免疫治疗的反应。使用单细胞RNA测序(scRNA)数据集、癌症细胞系百科全书(CCLE)和人类蛋白质图谱(HPA)进行验证。最终,构建了一个包含5个基因(ITGA5、MMP14、FN1、COL5A1和COL6A1)的CAF预后模型。值得注意的是,免疫浸润分析表明调节性T细胞(Treg)、巨噬细胞与CAF风险评分之间存在显著相关性。此外,TIDE分析表明,高CAF风险患者对免疫治疗的反应性降低。此外,GSEA显示该亚组中转化生长因子α(TGF-α)、炎症反应和上皮-间质转化(EMT)途径显著富集。最后,通过scRNA、CCLE和HPA数据集进行的验证证实了这些发现。

结论

5基因CAF风险特征在GBM患者中表现出准确的预后预测能力,并能有效评估临床免疫治疗反应。这些结果为CAF在GBM中的作用提供了有力证据,并强调了个性化抗CAF疗法联合免疫治疗的潜在临床价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f9af/11995297/fa7dba6f9acd/CNR2-8-e70158-g003.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验