Suppr超能文献

解析子宫内膜癌的生物学功能:来自预后特征模型的见解。

Unraveling the biological functions of UCEC: Insights from a prognostic signature model.

作者信息

Zhu Qi, Shan Wulin, Li Xiaoyu, Chen Yao, Huang Xu, Xia Bairong, Qian Liting

机构信息

The First Affiliated Hospital of University of Science and Technology of China, Hefei, Anhui 230031, China.

Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233030, China.

出版信息

Comput Biol Chem. 2024 Dec;113:108219. doi: 10.1016/j.compbiolchem.2024.108219. Epub 2024 Oct 11.

Abstract

BACKGROUND

Uterine corpus endometrial carcinoma (UCEC) is a prevalent gynecological tumor with a bleak prognosis. Anomalous glycosylation plays a pivotal role in tumorigenesis. Currently, there is a lack of prognostic signatures based on glycosylation-related genes for UCEC. Thus, our research aims to construct a predictive model and validate the correlation between relevant genes and biological functions.

METHODS

Using the TCGA database, we developed prognostic models and explored their relationships with survival outcomes. We further selected key genes to verify their expression in tissues and assess their impact on cellular behavior.

RESULTS

The clinical prognosis of the high-risk group was significantly worse than that of the low-risk group. The nomogram model accurately predicted UCEC patient prognosis. Additionally, we identified OLFML1 as a unique signature gene that can inhibit UCEC progression and reduce radiation resistance in vitro.

CONCLUSIONS

Our model, which is based on glycosylation-related genes in UCEC, effectively identifies high-risk patients and provides valuable prognostic information. In addition, OLFML1 acts as a tumor suppressor in UCEC and enhances radiosensitivity, suggesting a new potential target for improving therapeutic efficacy.

摘要

背景

子宫内膜癌(UCEC)是一种常见的妇科肿瘤,预后不佳。异常糖基化在肿瘤发生中起关键作用。目前,缺乏基于糖基化相关基因的UCEC预后特征。因此,我们的研究旨在构建一个预测模型,并验证相关基因与生物学功能之间的相关性。

方法

利用TCGA数据库,我们开发了预后模型,并探讨了它们与生存结果的关系。我们进一步选择关键基因,以验证它们在组织中的表达,并评估它们对细胞行为的影响。

结果

高危组的临床预后明显差于低危组。列线图模型准确预测了UCEC患者的预后。此外,我们确定OLFML1是一个独特的特征基因,它可以在体外抑制UCEC进展并降低辐射抗性。

结论

我们基于UCEC中糖基化相关基因构建的模型有效地识别了高危患者,并提供了有价值的预后信息。此外,OLFML1在UCEC中起肿瘤抑制作用并增强放射敏感性,提示其可能是提高治疗效果的新潜在靶点。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验