Suppr超能文献

通过简易氧化还原途径制备的新型铜/铁阴极,用于通过电芬顿辅助电氯化过程对苯酚进行电催化降解。

A novel Cu/Fe cathode prepared by a facile redox pathway for phenol degradation electrocatalytically via the electro-fenton assisted electro-chlorination process.

作者信息

Liang YeXin, Yuan Mingzhe, Cheng Haimei, Lv Haiqin, Zhao Lei, Tang JiaLi, Feng Yong, Huang Ying, Meng Qingguo

机构信息

Guangzhou Institute of Industrial Intelligence, Guangzhou 511400, PR China.

Guangdong Shengqing Hydrogen Technology Co., LTD, Foshan 528225, PR China.

出版信息

Water Res. 2025 Jan 1;268(Pt B):122744. doi: 10.1016/j.watres.2024.122744. Epub 2024 Nov 3.

Abstract

Electrochemical methods for treating phenolic wastewater have been widely studied, with most research focusing primarily on the anode, while the cathode has generally served as a counter electrode. This study aims to enhance the electrocatalytic process by developing a new Fe/Cu-based cathode using a simple redox method. We created a CuOCu@Fe-FeO (0 < x < 1, combining FeO and FeO) electrode, referred to as CCFFO, to facilitate the electro-Fenton process without requiring additional HO or Fe. In our electrolysis system with NaCl as the electrolyte for electro-chlorination process, phenol concentration was reduced from 100 mg/L to below 0.5 mg/L within 10 min. Optimal experimental conditions were determined by evaluating various parameters such as chloride electrolyte concentration, current density, electrode plate spacing, aeration, pH, and cathode types. Additionally, the role of chloride ions in phenol degradation was investigated through free radical quenching experiments. A 500-hour continuous flow experiment demonstrated the durability of the CCFFO cathode. GC/MS analysis identified intermediates formed during phenol degradation and the underlying catalytic mechanism was explored. The results indicate that the electro-chlorination process at the anode is the primary driver of phenol degradation, assisted by the electro-Fenton process on the CCFFO cathode. The CCFFO cathode effectively prevents the production of harmful by-products like perchlorate. The degradation efficiencies of chemical oxygen demand (COD) and total organic carbon (TOC) were 63.5 % and 80.25 %, respectively. Achieving a phenol degradation efficiency of 99.5 % within 10 min, the CCFFO cathode and electrolytic system show significant potential for wastewater treatment applications.

摘要

用于处理含酚废水的电化学方法已得到广泛研究,大多数研究主要集中在阳极,而阴极通常作为对电极。本研究旨在通过一种简单的氧化还原方法开发一种新型铁/铜基阴极来增强电催化过程。我们制备了一种CuOCu@Fe-FeO(0 < x < 1,结合了FeO和FeO)电极,称为CCFFO,以促进电芬顿过程,而无需额外的HO或Fe。在以NaCl为电解质进行电氯化过程的电解系统中,苯酚浓度在10分钟内从100 mg/L降至0.5 mg/L以下。通过评估各种参数,如氯化物电解质浓度、电流密度、电极板间距、曝气、pH值和阴极类型,确定了最佳实验条件。此外,通过自由基猝灭实验研究了氯离子在苯酚降解中的作用。一项500小时的连续流实验证明了CCFFO阴极的耐久性。气相色谱/质谱分析确定了苯酚降解过程中形成的中间体,并探索了潜在的催化机制。结果表明,阳极的电氯化过程是苯酚降解的主要驱动力,CCFFO阴极上的电芬顿过程起到辅助作用。CCFFO阴极有效地防止了高氯酸盐等有害副产物的产生。化学需氧量(COD)和总有机碳(TOC)的降解效率分别为63.5%和80.25%。CCFFO阴极和电解系统在10分钟内实现了99.5%的苯酚降解效率,在废水处理应用中显示出巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验