Sutton Treshaun B, Sawyer Danielle L, Naila Tasmin, Sweasy Joann B, Tomkinson Alan E, Delaney Sarah
Department of Chemistry, Brown University, Providence, RI 02912, United States.
Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States.
DNA Repair (Amst). 2024 Dec;144:103777. doi: 10.1016/j.dnarep.2024.103777. Epub 2024 Oct 19.
DNA damage is a fundamental molecular cause of genomic instability. Base excision repair (BER) is one line of defense to minimize the potential mutagenicity and/or toxicity derived from damaged nucleobase lesions. However, BER in the context of chromatin, in which eukaryotic genomic DNA is compacted through a hierarchy of DNA-histone protein interactions, is not fully understood. Here, we investigate the activity of BER enzymes at 27 unique geometric locations in a nucleosome core particle (NCP), which is the minimal unit of packaging in chromatin. The BER enzymes include uracil DNA glycosylase (UDG), AP endonuclease 1 (APE1), DNA polymerase β (Pol β), and DNA ligase IIIα complexed with X-ray repair cross complementing group 1 (LigIIIα/XRCC1). This global analysis of BER reveals that initiation of the repair event by UDG is dictated by the rotational position of the lesion. APE1 has robust activity at locations where repair is initiated whereas the repair event stalls at the Pol β nucleotide incorporation step within the central ∼45 bp of nucleosomal DNA. The final step of the repair, catalyzed by LigIIIα/XRCC1, is achieved only in the entry/exit regions of the NCP when nick sites are transiently exposed by unwrapping from the histones. Kinetic assays further elucidate that the location of the damaged lesion modulates enzymatic activity. Notably, these data indicate that some of the BER enzymes can act at a significant number of locations even in the absence of chromatin remodelers or other cellular factors. These results inform genome wide maps of DNA damage and mutations and contribute to our understanding of mutational hotspots and signatures.
DNA损伤是基因组不稳定的根本分子原因。碱基切除修复(BER)是一种防御机制,可将受损核碱基损伤产生的潜在致突变性和/或毒性降至最低。然而,在染色质环境中,真核基因组DNA通过DNA-组蛋白蛋白质相互作用的层次结构被压缩,目前对BER的了解还不完全。在这里,我们研究了BER酶在核小体核心颗粒(NCP)中27个独特几何位置的活性,NCP是染色质包装的最小单位。BER酶包括尿嘧啶DNA糖基化酶(UDG)、AP内切核酸酶1(APE1)、DNA聚合酶β(Pol β)以及与X射线修复交叉互补组1复合的DNA连接酶IIIα(LigIIIα/XRCC1)。对BER的这种全局分析表明,UDG引发修复事件取决于损伤的旋转位置。APE1在修复起始的位置具有强大的活性,而修复事件在核小体DNA中央约45bp内的Pol β核苷酸掺入步骤处停滞。由LigIIIα/XRCC1催化的修复最后一步,只有当切口位点通过从组蛋白上解开而短暂暴露时,才在NCP的进入/退出区域实现。动力学分析进一步阐明,受损损伤的位置调节酶活性。值得注意的是,这些数据表明,即使在没有染色质重塑剂或其他细胞因子的情况下,一些BER酶也可以在大量位置发挥作用。这些结果为DNA损伤和突变的全基因组图谱提供了信息,并有助于我们理解突变热点和特征。