Suppr超能文献

核小体核心颗粒碱基切除修复的全球筛选。

Global screening of base excision repair in nucleosome core particles.

作者信息

Sutton Treshaun B, Sawyer Danielle L, Naila Tasmin, Sweasy Joann B, Tomkinson Alan E, Delaney Sarah

机构信息

Department of Chemistry, Brown University, Providence, RI 02912, United States.

Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ 85724, United States.

出版信息

DNA Repair (Amst). 2024 Dec;144:103777. doi: 10.1016/j.dnarep.2024.103777. Epub 2024 Oct 19.

Abstract

DNA damage is a fundamental molecular cause of genomic instability. Base excision repair (BER) is one line of defense to minimize the potential mutagenicity and/or toxicity derived from damaged nucleobase lesions. However, BER in the context of chromatin, in which eukaryotic genomic DNA is compacted through a hierarchy of DNA-histone protein interactions, is not fully understood. Here, we investigate the activity of BER enzymes at 27 unique geometric locations in a nucleosome core particle (NCP), which is the minimal unit of packaging in chromatin. The BER enzymes include uracil DNA glycosylase (UDG), AP endonuclease 1 (APE1), DNA polymerase β (Pol β), and DNA ligase IIIα complexed with X-ray repair cross complementing group 1 (LigIIIα/XRCC1). This global analysis of BER reveals that initiation of the repair event by UDG is dictated by the rotational position of the lesion. APE1 has robust activity at locations where repair is initiated whereas the repair event stalls at the Pol β nucleotide incorporation step within the central ∼45 bp of nucleosomal DNA. The final step of the repair, catalyzed by LigIIIα/XRCC1, is achieved only in the entry/exit regions of the NCP when nick sites are transiently exposed by unwrapping from the histones. Kinetic assays further elucidate that the location of the damaged lesion modulates enzymatic activity. Notably, these data indicate that some of the BER enzymes can act at a significant number of locations even in the absence of chromatin remodelers or other cellular factors. These results inform genome wide maps of DNA damage and mutations and contribute to our understanding of mutational hotspots and signatures.

摘要

DNA损伤是基因组不稳定的根本分子原因。碱基切除修复(BER)是一种防御机制,可将受损核碱基损伤产生的潜在致突变性和/或毒性降至最低。然而,在染色质环境中,真核基因组DNA通过DNA-组蛋白蛋白质相互作用的层次结构被压缩,目前对BER的了解还不完全。在这里,我们研究了BER酶在核小体核心颗粒(NCP)中27个独特几何位置的活性,NCP是染色质包装的最小单位。BER酶包括尿嘧啶DNA糖基化酶(UDG)、AP内切核酸酶1(APE1)、DNA聚合酶β(Pol β)以及与X射线修复交叉互补组1复合的DNA连接酶IIIα(LigIIIα/XRCC1)。对BER的这种全局分析表明,UDG引发修复事件取决于损伤的旋转位置。APE1在修复起始的位置具有强大的活性,而修复事件在核小体DNA中央约45bp内的Pol β核苷酸掺入步骤处停滞。由LigIIIα/XRCC1催化的修复最后一步,只有当切口位点通过从组蛋白上解开而短暂暴露时,才在NCP的进入/退出区域实现。动力学分析进一步阐明,受损损伤的位置调节酶活性。值得注意的是,这些数据表明,即使在没有染色质重塑剂或其他细胞因子的情况下,一些BER酶也可以在大量位置发挥作用。这些结果为DNA损伤和突变的全基因组图谱提供了信息,并有助于我们理解突变热点和特征。

相似文献

1
Global screening of base excision repair in nucleosome core particles.
DNA Repair (Amst). 2024 Dec;144:103777. doi: 10.1016/j.dnarep.2024.103777. Epub 2024 Oct 19.
3
Base excision repair in nucleosomes lacking histone tails.
DNA Repair (Amst). 2005 Feb 3;4(2):203-9. doi: 10.1016/j.dnarep.2004.09.011.
5
Protein-Protein Interactions in Base Excision Repair.
Biomolecules. 2025 Jun 18;15(6):890. doi: 10.3390/biom15060890.
7
The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes.
J Biol Chem. 2013 May 10;288(19):13863-75. doi: 10.1074/jbc.M112.441444. Epub 2013 Mar 29.
8
Impact of DNA polymorphisms in key DNA base excision repair proteins on cancer risk.
Hum Exp Toxicol. 2012 Oct;31(10):981-1005. doi: 10.1177/0960327112444476. Epub 2012 Sep 27.

引用本文的文献

1
The zinc finger of DNA Ligase 3α binds to nucleosomes via an arginine anchor.
Res Sq. 2025 Mar 10:rs.3.rs-6033068. doi: 10.21203/rs.3.rs-6033068/v1.
2
Structural basis of gap-filling DNA synthesis in the nucleosome by DNA Polymerase β.
Nat Commun. 2025 Mar 17;16(1):2607. doi: 10.1038/s41467-025-57915-2.

本文引用的文献

1
Visualizing the coordination of apurinic/apyrimidinic endonuclease (APE1) and DNA polymerase β during base excision repair.
J Biol Chem. 2023 May;299(5):104636. doi: 10.1016/j.jbc.2023.104636. Epub 2023 Mar 22.
2
Ionic strength modulates excision of uracil by SMUG1 from nucleosome core particles.
DNA Repair (Amst). 2023 May;125:103482. doi: 10.1016/j.dnarep.2023.103482. Epub 2023 Mar 12.
3
Structural basis for APE1 processing DNA damage in the nucleosome.
Nat Commun. 2022 Sep 14;13(1):5390. doi: 10.1038/s41467-022-33057-7.
4
Histone variants H3.3 and H2A.Z/H3.3 facilitate excision of uracil from nucleosome core particles.
DNA Repair (Amst). 2022 Aug;116:103355. doi: 10.1016/j.dnarep.2022.103355. Epub 2022 Jun 12.
5
Obstacles and opportunities for base excision repair in chromatin.
DNA Repair (Amst). 2022 Aug;116:103345. doi: 10.1016/j.dnarep.2022.103345. Epub 2022 May 28.
6
Purification and Characterization of Human DNA Ligase IIIα Complexes After Expression in Insect Cells.
Methods Mol Biol. 2022;2444:243-269. doi: 10.1007/978-1-0716-2063-2_15.
7
Interlocking activities of DNA polymerase β in the base excision repair pathway.
Proc Natl Acad Sci U S A. 2022 Mar 8;119(10):e2118940119. doi: 10.1073/pnas.2118940119. Epub 2022 Mar 1.
8
The scaffold protein XRCC1 stabilizes the formation of polβ/gap DNA and ligase IIIα/nick DNA complexes in base excision repair.
J Biol Chem. 2021 Sep;297(3):101025. doi: 10.1016/j.jbc.2021.101025. Epub 2021 Jul 30.
10
Nucleosome Core Particles Lacking H2B or H3 Tails Are Altered Structurally and Have Differential Base Excision Repair Fingerprints.
Biochemistry. 2021 Jan 26;60(3):210-218. doi: 10.1021/acs.biochem.0c00877. Epub 2021 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验