Suppr超能文献

核小体核心颗粒中 DNA 损伤的结构位置决定了碱基切除修复酶的可及性。

The structural location of DNA lesions in nucleosome core particles determines accessibility by base excision repair enzymes.

机构信息

Department of Pharmaceutical Sciences, School of Molecular Biosciences, Washington State University, Pullman, WA 99164-7520, USA.

出版信息

J Biol Chem. 2013 May 10;288(19):13863-75. doi: 10.1074/jbc.M112.441444. Epub 2013 Mar 29.

Abstract

BACKGROUND

Base excision repair is hindered by nucleosomes.

RESULTS

Outwardly oriented uracils near the nucleosome center are efficiently cleaved; however, polymerase β is strongly inhibited at these sites.

CONCLUSION

The histone octamer presents different levels of constraints on BER, dependent on the structural requirements for enzyme activity.

SIGNIFICANCE

Chromatin remodeling is necessary to prevent accumulation of aborted intermediates in nucleosomes. Packaging of DNA into chromatin affects accessibility of DNA regulatory factors involved in transcription, replication, and repair. Evidence suggests that even in the nucleosome core particle (NCP), accessibility to damaged DNA is hindered by the presence of the histone octamer. Base excision repair is the major pathway in mammalian cells responsible for correcting a large number of chemically modified bases. We have measured the repair of site-specific uracil and single nucleotide gaps along the surface of the NCP. Our results indicate that removal of DNA lesions is greatly dependent on their rotational and translational positioning in NCPs. Significantly, the rate of uracil removal with outwardly oriented DNA backbones is 2-10-fold higher than those with inwardly oriented backbones. In general, uracils with inwardly oriented backbones farther away from the dyad center of the NCP are more accessible than those near the dyad. The translational positioning of outwardly oriented gaps is the key factor driving gap filling activity. An outwardly oriented gap near the DNA ends exhibits a 3-fold increase in gap filling activity as compared with one near the dyad with the same rotational orientation. Near the dyad, uracil DNA glycosylase/APE1 removes an outwardly oriented uracil efficiently; however, polymerase β activity is significantly inhibited at this site. These data suggest that the hindrance presented by the location of a DNA lesion is dependent on the structural requirements for enzyme catalysis. Therefore, remodeling at DNA damage sites in NCPs is critical for preventing accumulation of aborted intermediates and ensuring completion of base excision repair.

摘要

背景

碱基切除修复受到核小体的阻碍。

结果

核小体中心附近向外取向的尿嘧啶被有效切割;然而,聚合酶β在这些位点受到强烈抑制。

结论

组蛋白八聚体对 BER 呈现出不同程度的限制,这取决于酶活性的结构要求。

意义

染色质重塑对于防止核小体中未完成的中间产物积累是必要的。DNA 包装成染色质会影响参与转录、复制和修复的 DNA 调节因子的可及性。有证据表明,即使在核小体核心颗粒(NCP)中,组蛋白八聚体的存在也会阻碍受损 DNA 的可及性。碱基切除修复是哺乳动物细胞中负责纠正大量化学修饰碱基的主要途径。我们已经测量了 NCP 表面的特定位置尿嘧啶和单核苷酸缺口的修复。我们的结果表明,DNA 损伤的清除在很大程度上取决于它们在 NCP 中的旋转和平移定位。值得注意的是,具有向外取向 DNA 骨架的尿嘧啶的去除速率比具有向内取向骨架的尿嘧啶高 2-10 倍。通常,远离 NCP 二分体中心的具有向内取向骨架的尿嘧啶比靠近二分体的尿嘧啶更易接近。向外取向缺口的平移定位是驱动缺口填充活性的关键因素。与具有相同旋转取向的靠近二分体的缺口相比,靠近 DNA 末端的向外取向缺口的缺口填充活性增加了 3 倍。靠近二分体时,尿嘧啶 DNA 糖基化酶/APE1 有效地去除向外取向的尿嘧啶;然而,聚合酶β在该位点的活性受到显著抑制。这些数据表明,DNA 损伤部位的阻碍取决于酶催化的结构要求。因此,NCP 中 DNA 损伤部位的重塑对于防止未完成的中间产物积累和确保碱基切除修复的完成至关重要。

相似文献

8
[Initial stages of DNA Base Excision Repair in Nucleosomes].[核小体中DNA碱基切除修复的初始阶段]
Mol Biol (Mosk). 2021 Mar-Apr;55(2):194-209. doi: 10.31857/S0026898421020087.

引用本文的文献

7
Global screening of base excision repair in nucleosome core particles.核小体核心颗粒碱基切除修复的全球筛选。
DNA Repair (Amst). 2024 Dec;144:103777. doi: 10.1016/j.dnarep.2024.103777. Epub 2024 Oct 19.

本文引用的文献

1
Regulation of the nucleosome unwrapping rate controls DNA accessibility.核小体解缠绕速度的调控控制 DNA 的可及性。
Nucleic Acids Res. 2012 Nov 1;40(20):10215-27. doi: 10.1093/nar/gks747. Epub 2012 Sep 10.
3
5
Dynamics of nucleosome invasion by DNA binding proteins.DNA 结合蛋白对核小体的入侵动力学。
J Mol Biol. 2011 Aug 12;411(2):430-48. doi: 10.1016/j.jmb.2011.05.044. Epub 2011 Jun 6.
6
Nucleosome structural studies.核小体结构研究。
Curr Opin Struct Biol. 2011 Feb;21(1):128-36. doi: 10.1016/j.sbi.2010.11.006. Epub 2010 Dec 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验