Suppr超能文献

利用超级学习者预测大鼠的化学急性毒性。

Using the super-learner to predict the chemical acute toxicity on rats.

机构信息

School of Materials Science and Engineering, Beihang University, Beijing 100191, China.

State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.

出版信息

J Hazard Mater. 2024 Dec 5;480:136311. doi: 10.1016/j.jhazmat.2024.136311. Epub 2024 Oct 28.

Abstract

With the rapid increase in the number of commercial chemicals, testing methods regarding on median lethal dose (LD) relying animal experiments face challenges such as high costs and ethical concerns. Classical quantitative structure-activity relationship models relying on single algorithm always lack interpretability and precision, given the complexity of the mechanisms underlying acute toxicity. To address these issues, this study has developed a predictive framework using an ensemble learning model based on Super-learner. Particularly, we first obtained LD data for 9843 compounds and constructed 16 meta models using 4 molecular descriptors and machine learning algorithms. The Super-learner model performed well, achieving R² values of 0.61 and 0.64 in five-fold cross-validation and test sets, respectively, with corresponding root mean square errors of 0.55 and 0.64, significantly outperforming the results of individual model. Additionally, we incorporated data filtering and applicability domain methods, which demonstrated that the Super-learner can mitigate the impact of dataset noise to some extent. The model achieved an R² of 0.76 within an applicability domain, ensuring prediction accuracy within the chemical space. Compared to previous studies, the model developed here using Super-learner generally achieved better performance across a larger applicability domain. Finally, we has launched an online tool (http://sltox.hhra.net), allowing users to quickly predict LD of compounds, greatly simplifying the chemical safety assessment process. This study not only provides an effective and cost-efficient method for predicting chemical toxicity but also offers technical support and data for risk assessments of chemicals.

摘要

随着商业化学品数量的快速增加,基于动物实验的半数致死剂量 (LD) 测试方法面临着高成本和伦理问题等挑战。基于单一算法的经典定量构效关系模型由于急性毒性的机制复杂,往往缺乏可解释性和精确性。为了解决这些问题,本研究开发了一种基于 Super-learner 的集成学习模型预测框架。具体来说,我们首先获得了 9843 种化合物的 LD 数据,并使用 4 种分子描述符和机器学习算法构建了 16 个元模型。Super-learner 模型表现良好,在五折交叉验证和测试集中的 R²值分别为 0.61 和 0.64,相应的均方根误差分别为 0.55 和 0.64,明显优于单个模型的结果。此外,我们还整合了数据过滤和适用性域方法,证明 Super-learner 可以在一定程度上减轻数据集噪声的影响。在适用性域内,模型的 R²达到 0.76,确保了化学空间内的预测准确性。与之前的研究相比,本研究使用 Super-learner 开发的模型在更大的适用性域内通常具有更好的性能。最后,我们推出了一个在线工具(http://sltox.hhra.net),允许用户快速预测化合物的 LD,大大简化了化学安全性评估过程。本研究不仅为预测化学毒性提供了一种有效且经济高效的方法,还为化学品风险评估提供了技术支持和数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验