Suppr超能文献

利用深度学习技术自动检测和标记口腔 X 光片(牙科咬合片)中的后牙

Automated detection and labeling of posterior teeth in dental bitewing X-rays using deep learning.

机构信息

Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia.

Department of Restorative Dentistry, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.

出版信息

Comput Biol Med. 2024 Dec;183:109262. doi: 10.1016/j.compbiomed.2024.109262. Epub 2024 Oct 30.

Abstract

Standardized tooth numbering is crucial in dentistry for accurate recordkeeping, targeted procedures, and effective communication in both clinical and forensic contexts. However, conventional manual methods are prone to errors, time-consuming, and susceptible to inconsistencies. This study presents an artificial intelligence (AI)-powered system that uses a deep learning-based object detection approach to automate tooth numbering in bitewing radiographs (BRs). The system follows the widely accepted FDI two-digit notation system and employs a state-of-the-art YOLO architecture. This one-stage model provides fast inference by simultaneously performing object detection and classification. A comprehensive dataset of 3000 adult digital BRs was used for training and evaluation, covering various scenarios to improve the robustness of the tooth numbering approach. Performance was assessed based on precision, recall, and mean average precision (mAP). The proposed method showcases the potential of AI-powered systems utilizing sophisticated YOLO architectures to automatically detect and label teeth in dental X-rays. It achieved impressive results, demonstrating a precision of 0.99 and 0.963, recall of 0.995 and 0.965, and mAP of 0.99 and 0.963 for tooth detecting and tooth numbering, respectively. With an average inference time of 303 ms per BR when using a central processing unit (CPU) and 9.1 ms when using a graphics processing unit (GPU), the system seamlessly integrates into clinical workflows without sacrificing efficiency. This results in significant time savings for dental professionals while maintaining productivity in fast-paced clinical environments.

摘要

标准化的牙齿编号在牙科中至关重要,它可用于准确记录、靶向操作以及在临床和法医环境中进行有效的沟通。然而,传统的手动方法容易出错、耗时且容易不一致。本研究提出了一种人工智能(AI)驱动的系统,该系统使用基于深度学习的目标检测方法来自动对咬合翼片(BR)中的牙齿进行编号。该系统遵循广泛接受的 FDI 两位数字编号系统,并采用最先进的 YOLO 架构。这种单阶段模型通过同时执行对象检测和分类来提供快速推断。该系统使用了一个包含 3000 张成人数字 BR 的综合数据集进行训练和评估,涵盖了各种场景,以提高牙齿编号方法的稳健性。性能评估基于精度、召回率和平均精度(mAP)。该方法展示了利用复杂的 YOLO 架构的 AI 驱动系统在自动检测和标记牙科 X 光片中的牙齿方面的潜力。该方法在牙齿检测和编号方面的精度分别达到了 0.99 和 0.963、召回率分别达到了 0.995 和 0.965、mAP 分别达到了 0.99 和 0.963,并且在使用中央处理器(CPU)时,每个 BR 的平均推断时间为 303ms,在使用图形处理器(GPU)时为 9.1ms,系统无缝集成到临床工作流程中,不会牺牲效率。这为牙科专业人员节省了大量时间,同时在快节奏的临床环境中保持了生产力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验