Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.
Oral Surg Oral Med Oral Pathol Oral Radiol. 2024 May;137(5):537-544. doi: 10.1016/j.oooo.2023.06.003. Epub 2023 Jun 8.
This study aimed to assess the performance of the deep learning (DL) model for automated tooth numbering in panoramic radiographs.
The dataset of 500 panoramic images was selected according to the inclusion criteria and divided into training and testing data with a ratio of 80%:20%. Annotation on the data set was categorized into 32 classes based on the dental nomenclature of the universal numbering system using the LabelImg software. The training and testing process was carried out using You Only Look Once (YOLO) v4, a deep convolution neural network model for multiobject detection. The performance of YOLO v4 was evaluated using a confusion matrix. Furthermore, the detection time of YOLO v4 was compared with a certified radiologist using the Mann-Whitney test.
The accuracy, precision, recall, and F1 scores of YOLO v4 for tooth detection and numbering in the panoramic radiograph were 88.5%, 87.70%, 100%, and 93.44%, respectively. The mean numbering time using YOLO v4 was 20.58 ± 0.29 ms, significantly faster than humans (P < .0001).
The DL approach using the YOLO v4 model can be used to assist dentists in daily practice by performing accurate and fast automated tooth detection and numbering on panoramic radiographs.
本研究旨在评估深度学习(DL)模型在全景影像中自动牙齿编号的性能。
根据纳入标准选择了 500 张全景图像数据集,并将其分为 80%:20%的训练数据和测试数据。使用 LabelImg 软件,根据通用编号系统的牙科命名法,将数据集上的注释分为 32 类。使用 You Only Look Once(YOLO)v4 进行训练和测试过程,YOLO v4 是一种用于多目标检测的深度卷积神经网络模型。使用混淆矩阵评估 YOLO v4 的性能。此外,使用 Mann-Whitney 检验比较 YOLO v4 与认证放射科医生的检测时间。
YOLO v4 用于全景影像中牙齿检测和编号的准确性、精度、召回率和 F1 评分分别为 88.5%、87.70%、100%和 93.44%。使用 YOLO v4 的编号平均时间为 20.58±0.29ms,明显快于人类(P<0.0001)。
使用 YOLO v4 模型的 DL 方法可以通过在全景影像上进行准确和快速的自动牙齿检测和编号,协助牙医进行日常实践。