Suppr超能文献

基于深度学习的全景片上恒牙自动检测和编号。

Automated permanent tooth detection and numbering on panoramic radiograph using a deep learning approach.

机构信息

Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

Department of Dentomaxillofacial Radiology, Faculty of Dental Medicine, Universitas Airlangga, Surabaya, Indonesia.

出版信息

Oral Surg Oral Med Oral Pathol Oral Radiol. 2024 May;137(5):537-544. doi: 10.1016/j.oooo.2023.06.003. Epub 2023 Jun 8.

Abstract

OBJECTIVE

This study aimed to assess the performance of the deep learning (DL) model for automated tooth numbering in panoramic radiographs.

STUDY DESIGN

The dataset of 500 panoramic images was selected according to the inclusion criteria and divided into training and testing data with a ratio of 80%:20%. Annotation on the data set was categorized into 32 classes based on the dental nomenclature of the universal numbering system using the LabelImg software. The training and testing process was carried out using You Only Look Once (YOLO) v4, a deep convolution neural network model for multiobject detection. The performance of YOLO v4 was evaluated using a confusion matrix. Furthermore, the detection time of YOLO v4 was compared with a certified radiologist using the Mann-Whitney test.

RESULTS

The accuracy, precision, recall, and F1 scores of YOLO v4 for tooth detection and numbering in the panoramic radiograph were 88.5%, 87.70%, 100%, and 93.44%, respectively. The mean numbering time using YOLO v4 was 20.58 ± 0.29 ms, significantly faster than humans (P < .0001).

CONCLUSIONS

The DL approach using the YOLO v4 model can be used to assist dentists in daily practice by performing accurate and fast automated tooth detection and numbering on panoramic radiographs.

摘要

目的

本研究旨在评估深度学习(DL)模型在全景影像中自动牙齿编号的性能。

研究设计

根据纳入标准选择了 500 张全景图像数据集,并将其分为 80%:20%的训练数据和测试数据。使用 LabelImg 软件,根据通用编号系统的牙科命名法,将数据集上的注释分为 32 类。使用 You Only Look Once(YOLO)v4 进行训练和测试过程,YOLO v4 是一种用于多目标检测的深度卷积神经网络模型。使用混淆矩阵评估 YOLO v4 的性能。此外,使用 Mann-Whitney 检验比较 YOLO v4 与认证放射科医生的检测时间。

结果

YOLO v4 用于全景影像中牙齿检测和编号的准确性、精度、召回率和 F1 评分分别为 88.5%、87.70%、100%和 93.44%。使用 YOLO v4 的编号平均时间为 20.58±0.29ms,明显快于人类(P<0.0001)。

结论

使用 YOLO v4 模型的 DL 方法可以通过在全景影像上进行准确和快速的自动牙齿检测和编号,协助牙医进行日常实践。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验