Department of Stomatology, China-Japan Union Hospital of Jilin University, 126#Xiantai Street, Changchun, China.
School of Electrical and Computer Engineering, The University of Sydney, 2008, Darlington, NSW, Australia.
BMC Oral Health. 2024 Oct 9;24(1):1201. doi: 10.1186/s12903-024-04984-2.
Recently, deep learning has been increasingly applied in the field of dentistry. The aim of this study is to develop a model for the automatic segmentation, numbering, and state assessment of teeth on panoramic radiographs.
We created a dual-labeled dataset on panoramic radiographs for training, incorporating both numbering and state labels. We then developed a fusion model that combines a YOLOv9-e instance segmentation model with an EfficientNetv2-l classification model. The instance segmentation model is used for tooth segmentation and numbering, whereas the classification model is used for state evaluation. The final prediction results integrate tooth position, numbering, and state information. The model's output includes result visualization and automatic report generation.
Precision, Recall, mAP50 (mean Average Precision), and mAP50-95 for the tooth instance segmentation task are 0.989, 0.955, 0.975, and 0.840, respectively. Precision, Recall, Specificity, and F1 Score for the tooth classification task are 0.943, 0.933, 0.985, and 0.936, respectively.
This fusion model is the first to integrate automatic dental segmentation, numbering, and state assessment. It provides highly accurate results, including detailed visualizations and automated report generation.
近年来,深度学习在牙科领域的应用日益增多。本研究旨在开发一种用于全景 X 光片上牙齿自动分割、编号和状态评估的模型。
我们创建了一个带有全景 X 光片的双重标记数据集,其中包含编号和状态标签。然后,我们开发了一种融合模型,该模型结合了 YOLOv9-e 实例分割模型和 EfficientNetv2-l 分类模型。实例分割模型用于牙齿分割和编号,而分类模型用于状态评估。最终的预测结果整合了牙齿位置、编号和状态信息。该模型的输出包括结果可视化和自动报告生成。
牙齿实例分割任务的精度、召回率、mAP50(平均精度 50)和 mAP50-95 分别为 0.989、0.955、0.975 和 0.840。牙齿分类任务的精度、召回率、特异性和 F1 分数分别为 0.943、0.933、0.985 和 0.936。
该融合模型是第一个集成自动牙齿分割、编号和状态评估的模型。它提供了高度准确的结果,包括详细的可视化和自动化报告生成。