Suppr超能文献

基于文献的方法,使用入院变量预测成人急性护理患者的连续住院时间:单一大学中心的经验。

A literature-based approach to predict continuous hospital length of stay in adult acute care patients using admission variables: A single university center experience.

机构信息

Data Science Institute, Ghent University Hospital, Ghent, Belgium.

Ghent University, Ghent, Belgium.

出版信息

Int J Med Inform. 2025 Jan;193:105678. doi: 10.1016/j.ijmedinf.2024.105678. Epub 2024 Oct 28.

Abstract

PURPOSE

To review the existing literature on predicting length of stay (LOS) and to apply the findings on a Real World Data example in a single hospital.

METHODS

Performing a literature review on PubMed and Embase, focusing on adults, acute conditions, and hospital-wide prediction of LOS, summarizing all the variables and statistical methods used to predict LOS. Then, we use this set of variables on a single university hospital and run an XGBoost model with Survival Cox regression on the LOS, as well as a logistic regression on binary LOS (cut-off at 4 days). Model metrics are the concordance index (c-index) and area under the curve (AUC).

RESULTS

After applying the search strategy and exclusion criteria, 57 articles are included in the study. The list of variables is long, but mostly non-clinical data are used in the existing literature. A wide range of statistical methods are used, with a recent trend toward machine learning models. The XGBoost model results for the Cox regression in a C-index of 0.87, and the logistic regression on binary LOS has an AUC of 0.94.

CONCLUSIONS

Many variables identified in the literature are not available at the time of admission, yet they are still used in models for predicting LOS. Machine learning has become the preferred statistical approach in recent studies, though mainly for binary LOS predictions. Based on the current literature, it remains challenging to derive a practical and high performing model for continuous LOS prediction.

摘要

目的

回顾现有的关于预测住院时间(LOS)的文献,并将研究结果应用于单一医院的真实世界数据示例。

方法

在 PubMed 和 Embase 上进行文献回顾,重点关注成年人、急性疾病和全院范围内的 LOS 预测,总结用于预测 LOS 的所有变量和统计方法。然后,我们将这组变量应用于一家大学附属医院,并对 LOS 运行 XGBoost 模型和生存 Cox 回归,以及对二元 LOS(截止为 4 天)进行逻辑回归。模型指标为一致性指数(c-index)和曲线下面积(AUC)。

结果

经过应用搜索策略和排除标准,有 57 篇文章被纳入研究。变量列表很长,但现有文献中主要使用非临床数据。使用了广泛的统计方法,最近的趋势是机器学习模型。XGBoost 模型在 Cox 回归中的 C-index 为 0.87,二元 LOS 的逻辑回归 AUC 为 0.94。

结论

文献中确定的许多变量在入院时不可用,但仍用于 LOS 预测模型中。机器学习已成为最近研究中首选的统计方法,但主要用于二元 LOS 预测。基于目前的文献,对于连续 LOS 预测,仍然难以得出实用且性能较高的模型。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验