Suppr超能文献

使用深度神经网络从心电图预测肌钙蛋白生物标志物升高。

Predicting troponin biomarker elevation from electrocardiograms using a deep neural network.

机构信息

Department of Molecular and Clinical Medicine, University of Gothenburg, Goteborg, Sweden

Wallenberg Laboratory for Cardiovascular and Metabolic Research, Institute of Medicine, University of Gothenburg Sahlgrenska Academy, Goteborg, Sweden.

出版信息

Open Heart. 2024 Oct 30;11(2):e002937. doi: 10.1136/openhrt-2024-002937.

Abstract

BACKGROUND

Elevated troponin levels are a sensitive biomarker for cardiac injury. The quick and reliable prediction of troponin elevation for patients with chest pain from readily available ECGs may pose a valuable time-saving diagnostic tool during decision-making concerning this patient population.

METHODS AND RESULTS

The data used included 15 856 ECGs from patients presenting to the emergency rooms with chest pain or dyspnoea at two centres in Sweden from 2015 to June 2023. All patients had high-sensitivity troponin test results within 6 hours after 12-lead ECG. Both troponin I (TnI) and TnT were used, with biomarker-specific cut-offs and sex-specific cut-offs for TnI. On this dataset, a residual convolutional neural network (ResNet) was trained 10 times, each on a unique split of the data. The final model achieved an average area under the curve for the receiver operating characteristic curve of 0.7717 (95% CI±0.0052), calibration curve analysis revealed a mean slope of 1.243 (95% CI±0.075) and intercept of -0.073 (95% CI±0.034), indicating a good correlation between prediction and ground truth. Post-classification, tuned for F1 score, accuracy was 71.43% (95% CI±1.28), with an F1 score of 0.5642 (95% CI±0.0052) and a negative predictive value of 0.8660 (95% CI±0.0048), respectively. The ResNet displayed comparable or surpassing metrics to prior presented models.

CONCLUSION

The model exhibited clinically meaningful performance, notably its high negative predictive accuracy. Therefore, clinical use of comparable neural networks in first-line, quick-response triage of patients with chest pain or dyspnoea appears as a valuable option in future medical practice.

摘要

背景

肌钙蛋白水平升高是心脏损伤的敏感生物标志物。对于胸痛患者,从易得的心电图(ECG)中快速可靠地预测肌钙蛋白升高,可能是此类患者人群决策过程中的一种有价值的节省时间的诊断工具。

方法和结果

该研究使用的数据来自瑞典两家中心 2015 年至 2023 年 6 月期间因胸痛或呼吸困难就诊的 15856 例患者的 15856 份心电图。所有患者在接受 12 导联心电图后 6 小时内均进行了高敏肌钙蛋白检测。肌钙蛋白 I(TnI)和肌钙蛋白 T(TnT)均被使用,TnI 采用了基于标志物的截断值和基于性别特异性的截断值。在这个数据集上,使用 10 次残差卷积神经网络(ResNet)进行训练,每次都在独特的数据分割上进行。最终模型的接收器工作特征曲线下面积平均为 0.7717(95%置信区间±0.0052),校准曲线分析显示平均斜率为 1.243(95%置信区间±0.075),截距为-0.073(95%置信区间±0.034),表明预测值与真实值之间存在良好的相关性。在分类后,根据 F1 分数进行调整,准确率为 71.43%(95%置信区间±1.28),F1 得分为 0.5642(95%置信区间±0.0052),阴性预测值为 0.8660(95%置信区间±0.0048)。ResNet 的表现与之前提出的模型相当或更好。

结论

该模型表现出有临床意义的性能,尤其是其高阴性预测准确性。因此,在未来的医疗实践中,将类似的神经网络用于胸痛或呼吸困难患者的一线快速反应分诊,似乎是一种有价值的选择。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3e0c/11529765/02bad396655d/openhrt-11-2-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验