Suppr超能文献

深度学习增强心电图分析以识别生物标志物定义的心肌损伤。

Deep learning augmented ECG analysis to identify biomarker-defined myocardial injury.

机构信息

Department of Medicine, University of California, 555 Mission Bay Blvd South Box 3120, San Francisco, CA, 94158, USA.

Division of Cardiology, University of Washington, Seattle, USA.

出版信息

Sci Rep. 2023 Feb 27;13(1):3364. doi: 10.1038/s41598-023-29989-9.

Abstract

Chest pain is a common clinical complaint for which myocardial injury is the primary concern and is associated with significant morbidity and mortality. To aid providers' decision-making, we aimed to analyze the electrocardiogram (ECG) using a deep convolutional neural network (CNN) to predict serum troponin I (TnI) from ECGs. We developed a CNN using 64,728 ECGs from 32,479 patients who underwent ECG within 2 h prior to a serum TnI laboratory result at the University of California, San Francisco (UCSF). In our primary analysis, we classified patients into groups of TnI < 0.02 or ≥ 0.02 µg/L using 12-lead ECGs. This was repeated with an alternative threshold of 1.0 µg/L and with single-lead ECG inputs. We also performed multiclass prediction for a set of serum troponin ranges. Finally, we tested the CNN in a cohort of patients selected for coronary angiography, including 3038 ECGs from 672 patients. Cohort patients were 49.0% female, 42.8% white, and 59.3% (19,283) never had a positive TnI value (≥ 0.02 µg/L). CNNs accurately predicted elevated TnI, both at a threshold of 0.02 µg/L (AUC = 0.783, 95% CI 0.780-0.786) and at a threshold of 1.0 µg/L (AUC = 0.802, 0.795-0.809). Models using single-lead ECG data achieved significantly lower accuracy, with AUCs ranging from 0.740 to 0.773 with variation by lead. Accuracy of the multi-class model was lower for intermediate TnI value-ranges. Our models performed similarly on the cohort of patients who underwent coronary angiography. Biomarker-defined myocardial injury can be predicted by CNNs from 12-lead and single-lead ECGs.

摘要

胸痛是一种常见的临床症状,主要关注心肌损伤,并与显著的发病率和死亡率相关。为了帮助医生做出决策,我们旨在使用深度卷积神经网络(CNN)分析心电图(ECG),以从 ECG 预测血清肌钙蛋白 I(TnI)。我们使用来自加利福尼亚大学旧金山分校(UCSF)的 32479 名患者的 64728 份 ECG 开发了一个 CNN,这些患者在进行血清 TnI 实验室检测前 2 小时内接受了 ECG 检查。在我们的主要分析中,我们使用 12 导联 ECG 将患者分为 TnI<0.02 或≥0.02µg/L 两组。我们使用替代阈值 1.0µg/L 和单导联 ECG 输入重复了此操作。我们还对一组血清肌钙蛋白范围进行了多类预测。最后,我们在一组选择进行冠状动脉造影的患者中测试了 CNN,包括来自 672 名患者的 3038 份 ECG。队列患者中 49.0%为女性,42.8%为白人,59.3%(19283 人)从未有过阳性 TnI 值(≥0.02µg/L)。CNN 准确预测了升高的 TnI,无论是在 0.02µg/L 的阈值(AUC=0.783,95%CI 0.780-0.786)还是在 1.0µg/L 的阈值(AUC=0.802,0.795-0.809)。使用单导联 ECG 数据的模型准确性显著较低,AUC 范围为 0.740 至 0.773,具体取决于导联。中间 TnI 值范围的多类模型准确性较低。我们的模型在接受冠状动脉造影的患者队列中表现相似。CNN 可以从 12 导联和单导联 ECG 预测生物标志物定义的心肌损伤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2713/9971165/d9da31e8186a/41598_2023_29989_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验