Oberreiter Lukas, Seifert Udo, Barato Andre C
II. Institut für Theoretische Physik, Universität Stuttgart, 70550 Stuttgart, Germany.
Department of Physics, University of Houston, Houston, Texas 77204, USA.
Phys Rev E. 2022 Jul;106(1-1):014106. doi: 10.1103/PhysRevE.106.014106.
Biochemical clocks are essential for virtually all living systems. A biochemical clock that is isolated from an external periodic signal and subjected to fluctuations can oscillate coherently only for a finite number of oscillations. Furthermore, such an autonomous clock can oscillate only if it consumes free energy. What is the minimum amount of free-energy consumption required for a certain number of coherent oscillations? We conjecture a universal bound that answers this question. A system that oscillates coherently for N oscillations has a minimal free-energy cost per oscillation of 4π^{2}Nk_{B}T. Our bound is valid for general finite Markov processes, is conjectured based on extensive numerical evidence, is illustrated with numerical simulations of a known model for a biochemical oscillator, and applies to existing experimental data.
生化时钟对于几乎所有的生命系统来说都是必不可少的。一个与外部周期性信号隔离并受到波动影响的生化时钟,只能在有限次数的振荡中保持相干振荡。此外,这样一个自主时钟只有在消耗自由能时才能振荡。对于一定数量的相干振荡,所需的最小自由能消耗是多少?我们推测了一个通用的界限来回答这个问题。一个能进行N次相干振荡的系统,每次振荡的最小自由能成本为4π²Nk_BT。我们的界限适用于一般的有限马尔可夫过程,是基于大量数值证据推测出来的,通过一个已知生化振荡器模型的数值模拟进行了说明,并适用于现有的实验数据。