文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

RAS 突变型白血病干细胞导致对维奈克拉的临床耐药。

RAS-mutant leukaemia stem cells drive clinical resistance to venetoclax.

作者信息

Sango Junya, Carcamo Saul, Sirenko Maria, Maiti Abhishek, Mansour Hager, Ulukaya Gulay, Tomalin Lewis E, Cruz-Rodriguez Nataly, Wang Tiansu, Olszewska Malgorzata, Olivier Emmanuel, Jaud Manon, Nadorp Bettina, Kroger Benjamin, Hu Feng, Silverman Lewis, Chung Stephen S, Wagenblast Elvin, Chaligne Ronan, Eisfeld Ann-Kathrin, Demircioglu Deniz, Landau Dan A, Lito Piro, Papaemmanuil Elli, DiNardo Courtney D, Hasson Dan, Konopleva Marina, Papapetrou Eirini P

机构信息

Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.

出版信息

Nature. 2024 Dec;636(8041):241-250. doi: 10.1038/s41586-024-08137-x. Epub 2024 Oct 30.


DOI:10.1038/s41586-024-08137-x
PMID:39478230
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11618090/
Abstract

Cancer driver mutations often show distinct temporal acquisition patterns, but the biological basis for this, if any, remains unknown. RAS mutations occur invariably late in the course of acute myeloid leukaemia, upon progression or relapsed/refractory disease. Here, by using human leukaemogenesis models, we first show that RAS mutations are obligatory late events that need to succeed earlier cooperating mutations. We provide the mechanistic explanation for this in a requirement for mutant RAS to specifically transform committed progenitors of the myelomonocytic lineage (granulocyte-monocyte progenitors) harbouring previously acquired driver mutations, showing that advanced leukaemic clones can originate from a different cell type in the haematopoietic hierarchy than ancestral clones. Furthermore, we demonstrate that RAS-mutant leukaemia stem cells (LSCs) give rise to monocytic disease, as observed frequently in patients with poor responses to treatment with the BCL2 inhibitor venetoclax. We show that this is because RAS-mutant LSCs, in contrast to RAS-wild-type LSCs, have altered BCL2 family gene expression and are resistant to venetoclax, driving clinical resistance and relapse with monocytic features. Our findings demonstrate that a specific genetic driver shapes the non-genetic cellular hierarchy of acute myeloid leukaemia by imposing a specific LSC target cell restriction and critically affects therapeutic outcomes in patients.

摘要

癌症驱动突变通常呈现出不同的时间获得模式,但其生物学基础(如果有的话)仍然未知。RAS突变总是在急性髓系白血病病程的晚期、病情进展或复发/难治性疾病时出现。在这里,通过使用人类白血病发生模型,我们首先表明RAS突变是必需的晚期事件,需要先于早期协同突变发生。我们对此提供了机制解释,即突变型RAS需要特异性地转化携带先前获得的驱动突变的髓单核细胞系(粒细胞-单核细胞祖细胞)的定向祖细胞,这表明晚期白血病克隆可以起源于造血层级中与祖代克隆不同的细胞类型。此外,我们证明RAS突变的白血病干细胞(LSC)会引发单核细胞疾病,这在对BCL2抑制剂维奈托克治疗反应不佳的患者中经常观察到。我们表明,这是因为与RAS野生型LSC相比,RAS突变的LSC改变了BCL2家族基因表达,对维奈托克具有抗性,从而导致临床耐药和具有单核细胞特征的复发。我们的研究结果表明,特定的遗传驱动因素通过施加特定的LSC靶细胞限制来塑造急性髓系白血病的非遗传细胞层级,并严重影响患者的治疗结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/4ab7a6aa1cbd/41586_2024_8137_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/b4d386148c89/41586_2024_8137_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/4c75cd026204/41586_2024_8137_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/23fbf00132f1/41586_2024_8137_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/13ebd36f9475/41586_2024_8137_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/c8a65ec6a8cf/41586_2024_8137_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/9acdd906347a/41586_2024_8137_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/fb49c507f312/41586_2024_8137_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/96de69a880c7/41586_2024_8137_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/66ea95e62f22/41586_2024_8137_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/a6c853e3561c/41586_2024_8137_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/74882f3a9a85/41586_2024_8137_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/998ce48db432/41586_2024_8137_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/78a71a68cd0d/41586_2024_8137_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/eb17de4ab4af/41586_2024_8137_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/60742dfa0d42/41586_2024_8137_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/4ab7a6aa1cbd/41586_2024_8137_Fig16_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/b4d386148c89/41586_2024_8137_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/4c75cd026204/41586_2024_8137_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/23fbf00132f1/41586_2024_8137_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/13ebd36f9475/41586_2024_8137_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/c8a65ec6a8cf/41586_2024_8137_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/9acdd906347a/41586_2024_8137_Fig6_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/fb49c507f312/41586_2024_8137_Fig7_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/96de69a880c7/41586_2024_8137_Fig8_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/66ea95e62f22/41586_2024_8137_Fig9_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/a6c853e3561c/41586_2024_8137_Fig10_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/74882f3a9a85/41586_2024_8137_Fig11_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/998ce48db432/41586_2024_8137_Fig12_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/78a71a68cd0d/41586_2024_8137_Fig13_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/eb17de4ab4af/41586_2024_8137_Fig14_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/60742dfa0d42/41586_2024_8137_Fig15_ESM.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/169e/11618090/4ab7a6aa1cbd/41586_2024_8137_Fig16_ESM.jpg

相似文献

[1]
RAS-mutant leukaemia stem cells drive clinical resistance to venetoclax.

Nature. 2024-12

[2]
Dynamic evolution of venetoclax resistance in acute myeloid leukemia unveiled by longitudinal single-cell RNA-seq.

Cancer Lett. 2025-9-28

[3]
Venetoclax dose escalation rapidly activates a BAFF/BCL-2 survival axis in chronic lymphocytic leukemia.

Blood. 2024-12-26

[4]
Venetoclax therapy and emerging resistance mechanisms in acute myeloid leukaemia.

Cell Death Dis. 2024-6-12

[5]
Oral decitabine and cedazuridine plus venetoclax for older or unfit patients with acute myeloid leukaemia: a phase 2 study.

Lancet Haematol. 2024-4

[6]
Anti-CLL1 liposome loaded with miR-497-5p and venetoclax as a novel therapeutic strategy in acute myeloid leukemia.

Mol Ther. 2024-11-6

[7]
A CEBPB/IL-1β/TNF-α feedback loop drives drug resistance to venetoclax and MDM2 inhibitors in monocytic leukemia.

Blood. 2025-5-22

[8]
Ex vivo venetoclax sensitivity predicts clinical response in acute myeloid leukemia in the prospective VenEx trial.

Blood. 2025-1-23

[9]
Venetoclax and pegcrisantaspase for complex karyotype acute myeloid leukemia.

Leukemia. 2021-7

[10]
Heme promotes venetoclax resistance in multiple myeloma through MEK-ERK signaling and purine biosynthesis.

Blood. 2025-2-13

引用本文的文献

[1]
Transcriptional profiling directs the classification of acute leukemias of ambiguous lineage into AML, B-ALL, or T-ALL.

Hemasphere. 2025-8-19

[2]
Genomic and immunogenomic profiling of extramedullary acute myeloid leukemia reveals actionable clonal branching and frequent immune editing.

Blood Cancer J. 2025-8-13

[3]
Multi-selective RAS(ON) Inhibition Targets Oncogenic RAS Mutations and Overcomes RAS/MAPK-Mediated Resistance to FLT3 and BCL2 Inhibitors in Acute Myeloid Leukemia.

bioRxiv. 2025-6-14

[4]
-Mutated AML: Deciphering the Molecular and Clinical Puzzle in the Era of Novel Treatment Strategies.

Cancers (Basel). 2025-6-23

[5]
Hematopoietic Stem Cell Hierarchies As Novel Biomarkers of Drug Response in Myelodysplastic Syndromes and Acute Myeloid Leukemia.

Clin Cancer Res. 2025-6-26

[6]
Dasatinib overcomes AML cells resistant to BCL2 inhibition by degrading MCL1.

Br J Haematol. 2025-6-6

[7]
Evolution, spread and impact of highly pathogenic H5 avian influenza A viruses.

Nat Rev Microbiol. 2025-5-22

[8]
A revised prognostic model for patients with acute myeloid leukemia and first relapse.

Blood Adv. 2025-8-12

[9]
Mapping of Functional Metabolic Phenotypes in Acute Myeloid Leukemia.

Cancer Med. 2025-5

[10]
Taurine from tumour niche drives glycolysis to promote leukaemogenesis.

Nature. 2025-5-14

本文引用的文献

[1]
Molecular International Prognostic Scoring System for Myelodysplastic Syndromes.

NEJM Evid. 2022-7

[2]
Chemical remodeling of a cellular chaperone to target the active state of mutant KRAS.

Science. 2023-8-18

[3]
A Novel Type of Monocytic Leukemia Stem Cell Revealed by the Clinical Use of Venetoclax-Based Therapy.

Cancer Discov. 2023-9-6

[4]
Patient-Derived iPSCs Faithfully Represent the Genetic Diversity and Cellular Architecture of Human Acute Myeloid Leukemia.

Blood Cancer Discov. 2023-7-5

[5]
Combinatorial BCL2 Family Expression in Acute Myeloid Leukemia Stem Cells Predicts Clinical Response to Azacitidine/Venetoclax.

Cancer Discov. 2023-6-2

[6]
An inflammatory state remodels the immune microenvironment and improves risk stratification in acute myeloid leukemia.

Nat Cancer. 2023-1

[7]
Convergent Clonal Evolution of Signaling Gene Mutations Is a Hallmark of Myelodysplastic Syndrome Progression.

Blood Cancer Discov. 2022-7-6

[8]
Phase II Study of Venetoclax Added to Cladribine Plus Low-Dose Cytarabine Alternating With 5-Azacitidine in Older Patients With Newly Diagnosed Acute Myeloid Leukemia.

J Clin Oncol. 2022-11-20

[9]
A cellular hierarchy framework for understanding heterogeneity and predicting drug response in acute myeloid leukemia.

Nat Med. 2022-6

[10]
Maximal Activation of Apoptosis Signaling by Cotargeting Antiapoptotic Proteins in BH3 Mimetic-Resistant AML and AML Stem Cells.

Mol Cancer Ther. 2022-6-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索