Suppr超能文献

药物扰动的肺癌培养物和组织中的空间分辨亚细胞蛋白质-蛋白质相互作用组学

Spatially resolved subcellular protein-protein interactomics in drug-perturbed lung-cancer cultures and tissues.

作者信息

Cai Shuangyi, Hu Thomas, Venkataraman Abhijeet, Rivera Moctezuma Felix G, Ozturk Efe, Zhang Nicholas, Wang Mingshuang, Zvidzai Tatenda, Das Sandip, Pillai Adithya, Schneider Frank, Ramalingam Suresh S, Oh You-Take, Sun Shi-Yong, Coskun Ahmet F

机构信息

Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.

School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA.

出版信息

Nat Biomed Eng. 2024 Oct 30. doi: 10.1038/s41551-024-01271-x.

Abstract

Protein-protein interactions (PPIs) regulate signalling pathways and cell phenotypes, and the visualization of spatially resolved dynamics of PPIs would thus shed light on the activation and crosstalk of signalling networks. Here we report a method that leverages a sequential proximity ligation assay for the multiplexed profiling of PPIs with up to 47 proteins involved in multisignalling crosstalk pathways. We applied the method, followed by conventional immunofluorescence, to cell cultures and tissues of non-small-cell lung cancers with a mutated epidermal growth-factor receptor to determine the co-localization of PPIs in subcellular volumes and to reconstruct changes in the subcellular distributions of PPIs in response to perturbations by the tyrosine kinase inhibitor osimertinib. We also show that a graph convolutional network encoding spatially resolved PPIs can accurately predict the cell-treatment status of single cells. Multiplexed proximity ligation assays aided by graph-based deep learning can provide insights into the subcellular organization of PPIs towards the design of drugs for targeting the protein interactome.

摘要

蛋白质-蛋白质相互作用(PPIs)调节信号通路和细胞表型,因此,对PPIs空间分辨动力学的可视化将有助于揭示信号网络的激活和串扰。在此,我们报告了一种方法,该方法利用顺序邻近连接分析对参与多信号串扰途径的多达47种蛋白质进行PPIs的多重分析。我们将该方法与传统免疫荧光相结合,应用于具有表皮生长因子受体突变的非小细胞肺癌细胞培养物和组织,以确定PPIs在亚细胞区域的共定位,并重建酪氨酸激酶抑制剂奥希替尼扰动后PPIs亚细胞分布的变化。我们还表明,编码空间分辨PPIs的图卷积网络可以准确预测单细胞的细胞治疗状态。基于图的深度学习辅助的多重邻近连接分析可以为PPIs的亚细胞组织提供见解,以指导针对蛋白质相互作用组的药物设计。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验