Cheheili Sobbi Shokoufeh, Pauli Milou, Fillet Marvin, Maessen Jos G, Sardari Nia Peyman
Department of Cardiothoracic Surgery, Heart and Vascular Centre Maastricht University Medical Centre, Maastricht, The Netherlands.
Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.
JTCVS Tech. 2024 Jun 21;27:104-111. doi: 10.1016/j.xjtc.2024.06.008. eCollection 2024 Oct.
OBJECTIVES: Replicating 3-dimensional prints of patient-specific mitral valves in soft materials is a cumbersome and time-consuming process. The aim of this study was to develop a method for a direct 3-dimensional printing of patient-specific mitral valves in soft material for simulation-based training and procedural planning. METHODS: A process was developed based on data acquisition using 3-dimensional transesophageal echocardiography Cartesian Digital Imaging and Communication of Medicine format, image processing using software (Vesalius3D, Blender, Meshlab, Atum3D Operation Station), and 3-dimensional printing using digital light processing, an additive manufacturing process based on photopolymer resins. Experiments involved adjustment of 3 variables: curing times, model thinness, and lattice structuring during the printing process. Printed models were evaluated for suitability in physical simulation by an experienced mitral valve surgeon. RESULTS: Direct 3-dimensional printing of a patient's mitral valve in soft material was completed within a range of 1.5 to 4.5 hours. Prints with postcuring times of 5, 7, 10, and 15 minutes resulted in increased stiffness. The mitral valves with 2.0-mm and 2.4-mm thinner leaflets felt more flexible without tear of the sutures through the material. The addition of lattice structures made the prints more compliant and better supported suturing. CONCLUSIONS: Direct 3-dimensional printing of a realistic and flexible patient-specific mitral valve was achieved within a few hours. A combination of thinner leaflets, reduced curing time, and lattice structures enabled the creation of a realistic patient-specific mitral valve in soft material for physical simulation.
目的:使用软质材料复制患者特异性二尖瓣的三维打印是一个繁琐且耗时的过程。本研究的目的是开发一种在软质材料中直接三维打印患者特异性二尖瓣的方法,用于基于模拟的训练和手术规划。 方法:基于使用三维经食管超声心动图笛卡尔数字医学成像与通信格式进行数据采集、使用软件(Vesalius3D、Blender、Meshlab、Atum3D手术工作站)进行图像处理以及使用数字光处理(一种基于光聚合树脂的增材制造工艺)进行三维打印,开发了一种流程。实验涉及在打印过程中调整三个变量:固化时间、模型薄厚和晶格结构。由一位经验丰富的二尖瓣外科医生评估打印模型在物理模拟中的适用性。 结果:在1.5至4.5小时的范围内完成了患者二尖瓣在软质材料中的直接三维打印。后固化时间为5、7、10和15分钟的打印件硬度增加。小叶厚度为2.0毫米和2.4毫米的二尖瓣感觉更灵活,且缝合线不会穿透材料撕裂。添加晶格结构使打印件更柔顺,并且对缝合的支撑性更好。 结论:在数小时内实现了逼真且灵活的患者特异性二尖瓣的直接三维打印。较薄的小叶、缩短的固化时间和晶格结构的组合能够在软质材料中创建用于物理模拟的逼真的患者特异性二尖瓣。
Eur J Cardiothorac Surg. 2019-3-1
Eur J Cardiothorac Surg. 2022-3-24
Ann Biomed Eng. 2017-2
Interact Cardiovasc Thorac Surg. 2018-1-1
Interact Cardiovasc Thorac Surg. 2017-2-1
Int J Comput Assist Radiol Surg. 2019-4-17
Ann Thorac Surg. 2014-8
Eur J Cardiothorac Surg. 2022-2-18
JTCVS Tech. 2021-4-20
JACC Cardiovasc Imaging. 2021-1
Interact Cardiovasc Thorac Surg. 2020-5-1
Int J Comput Assist Radiol Surg. 2019-4-17
Updates Surg. 2019-3
Eur Radiol Exp. 2019-2-15
J Thorac Cardiovasc Surg. 2018-9-29