文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于模拟和手术规划的患者特异性二尖瓣软材料直接三维打印技术的发展。

The development of direct 3-dimensional printing of patient-specific mitral valve in soft material for simulation and procedural planning.

作者信息

Cheheili Sobbi Shokoufeh, Pauli Milou, Fillet Marvin, Maessen Jos G, Sardari Nia Peyman

机构信息

Department of Cardiothoracic Surgery, Heart and Vascular Centre Maastricht University Medical Centre, Maastricht, The Netherlands.

Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands.

出版信息

JTCVS Tech. 2024 Jun 21;27:104-111. doi: 10.1016/j.xjtc.2024.06.008. eCollection 2024 Oct.


DOI:10.1016/j.xjtc.2024.06.008
PMID:39478931
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11518862/
Abstract

OBJECTIVES: Replicating 3-dimensional prints of patient-specific mitral valves in soft materials is a cumbersome and time-consuming process. The aim of this study was to develop a method for a direct 3-dimensional printing of patient-specific mitral valves in soft material for simulation-based training and procedural planning. METHODS: A process was developed based on data acquisition using 3-dimensional transesophageal echocardiography Cartesian Digital Imaging and Communication of Medicine format, image processing using software (Vesalius3D, Blender, Meshlab, Atum3D Operation Station), and 3-dimensional printing using digital light processing, an additive manufacturing process based on photopolymer resins. Experiments involved adjustment of 3 variables: curing times, model thinness, and lattice structuring during the printing process. Printed models were evaluated for suitability in physical simulation by an experienced mitral valve surgeon. RESULTS: Direct 3-dimensional printing of a patient's mitral valve in soft material was completed within a range of 1.5 to 4.5 hours. Prints with postcuring times of 5, 7, 10, and 15 minutes resulted in increased stiffness. The mitral valves with 2.0-mm and 2.4-mm thinner leaflets felt more flexible without tear of the sutures through the material. The addition of lattice structures made the prints more compliant and better supported suturing. CONCLUSIONS: Direct 3-dimensional printing of a realistic and flexible patient-specific mitral valve was achieved within a few hours. A combination of thinner leaflets, reduced curing time, and lattice structures enabled the creation of a realistic patient-specific mitral valve in soft material for physical simulation.

摘要

目的:使用软质材料复制患者特异性二尖瓣的三维打印是一个繁琐且耗时的过程。本研究的目的是开发一种在软质材料中直接三维打印患者特异性二尖瓣的方法,用于基于模拟的训练和手术规划。 方法:基于使用三维经食管超声心动图笛卡尔数字医学成像与通信格式进行数据采集、使用软件(Vesalius3D、Blender、Meshlab、Atum3D手术工作站)进行图像处理以及使用数字光处理(一种基于光聚合树脂的增材制造工艺)进行三维打印,开发了一种流程。实验涉及在打印过程中调整三个变量:固化时间、模型薄厚和晶格结构。由一位经验丰富的二尖瓣外科医生评估打印模型在物理模拟中的适用性。 结果:在1.5至4.5小时的范围内完成了患者二尖瓣在软质材料中的直接三维打印。后固化时间为5、7、10和15分钟的打印件硬度增加。小叶厚度为2.0毫米和2.4毫米的二尖瓣感觉更灵活,且缝合线不会穿透材料撕裂。添加晶格结构使打印件更柔顺,并且对缝合的支撑性更好。 结论:在数小时内实现了逼真且灵活的患者特异性二尖瓣的直接三维打印。较薄的小叶、缩短的固化时间和晶格结构的组合能够在软质材料中创建用于物理模拟的逼真的患者特异性二尖瓣。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/c02cd3103527/fx2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/3608a281b21a/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/f3e13e8aed50/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/69a63c1707b6/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/cfa97b17d8f5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/283f564fbcd2/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/52ae68d99ca1/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/26c298cdca26/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/473ea955114c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/c02cd3103527/fx2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/3608a281b21a/ga1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/f3e13e8aed50/fx1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/69a63c1707b6/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/cfa97b17d8f5/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/283f564fbcd2/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/52ae68d99ca1/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/26c298cdca26/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/473ea955114c/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b4f1/11518862/c02cd3103527/fx2.jpg

相似文献

[1]
The development of direct 3-dimensional printing of patient-specific mitral valve in soft material for simulation and procedural planning.

JTCVS Tech. 2024-6-21

[2]
Mitral valve modelling and three-dimensional printing for planning and simulation of mitral valve repair.

Eur J Cardiothorac Surg. 2019-3-1

[3]
Comparison of 3D Echocardiogram-Derived 3D Printed Valve Models to Molded Models for Simulated Repair of Pediatric Atrioventricular Valves.

Pediatr Cardiol. 2018-3

[4]
A soft functional mitral valve model prepared by three-dimensional printing as an aid for an advanced mitral valve operation.

Eur J Cardiothorac Surg. 2022-3-24

[5]
3D Printed Modeling of the Mitral Valve for Catheter-Based Structural Interventions.

Ann Biomed Eng. 2017-2

[6]
3D printed mitral valve models: affordable simulation for robotic mitral valve repair.

Interact Cardiovasc Thorac Surg. 2018-1-1

[7]
Preoperative planning with three-dimensional reconstruction of patient's anatomy, rapid prototyping and simulation for endoscopic mitral valve repair.

Interact Cardiovasc Thorac Surg. 2017-2-1

[8]
Flexible and comprehensive patient-specific mitral valve silicone models with chordae tendineae made from 3D-printable molds.

Int J Comput Assist Radiol Surg. 2019-4-17

[9]
Three-dimensional ultrasound-derived physical mitral valve modeling.

Ann Thorac Surg. 2014-8

[10]
Morphology display and hemodynamic testing using 3D printing may aid in the prediction of LVOT obstruction after mitral valve replacement.

Int J Cardiol. 2021-5-15

引用本文的文献

[1]
3D printing variation: Teaching and assessing hepatobiliary variants in human anatomy.

Anat Sci Educ. 2025-9

[2]
Development of an Innovative Pipeline With Fusion, Digital Planning, and Three-Dimensional Printing to Improve Mitral Valve Interventional Care.

Echocardiography. 2025-5

本文引用的文献

[1]
The application of 3D printing in preoperative planning for transcatheter aortic valve replacement: a systematic review.

Biomed Eng Online. 2022-9-1

[2]
Minimally invasive endoscopic mitral valve repair-the new gold standard for degenerative mitral valve disease.

Eur J Cardiothorac Surg. 2022-2-18

[3]
Three-dimensional printing to plan intracardiac operations.

JTCVS Tech. 2021-4-20

[4]
3D Printing, Computational Modeling, and Artificial Intelligence for Structural Heart Disease.

JACC Cardiovasc Imaging. 2021-1

[5]
3D printing in adult cardiovascular surgery and interventions: a systematic review.

J Thorac Dis. 2020-6

[6]
The EACTS simulation-based training course for endoscopic mitral valve repair: an air-pilot training concept in action.

Interact Cardiovasc Thorac Surg. 2020-5-1

[7]
Flexible and comprehensive patient-specific mitral valve silicone models with chordae tendineae made from 3D-printable molds.

Int J Comput Assist Radiol Surg. 2019-4-17

[8]
Use of 3D models for planning, simulation, and training in vascular surgery.

Updates Surg. 2019-3

[9]
3D printing for heart valve disease: a systematic review.

Eur Radiol Exp. 2019-2-15

[10]
Development of a high-fidelity minimally invasive mitral valve surgery simulator.

J Thorac Cardiovasc Surg. 2018-9-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索