Gossage Zachary T, Igarashi Daisuke, Fujii Yuki, Kawaguchi Masayuki, Tatara Ryoichi, Nakamoto Kosuke, Komaba Shinichi
Department of Applied Chemistry, Tokyo University of Science Tokyo 162-8601 Japan
Fundamental Electronics Research Institute, Osaka Electro-Communication University Neyagawa Osaka 572-8530 Japan.
Chem Sci. 2024 Oct 17;15(44):18272-94. doi: 10.1039/d4sc03203a.
With rising interest in new electrodes for next-generation batteries, carbon materials remain as top competitors with their reliable performance, low-cost, low voltage reactions, and diverse tunability. Depending on carbon's structure, it can attain high cyclability as with Li at crystalline graphite or exceptional capacities with Na at amorphous, porous hard carbons. In this review, we discuss key results and research directions using carbon electrodes for alkali ion storage. We start the first section with hard carbon (HC), a leading material of interest for next-generation Na-ion batteries. Methods for tuning the HC structure towards a high capacity pore-filling mechanism are examined. The rate performance of hard carbon electrodes is further discussed. We finish this section with soft carbons that mostly remain as low performing materials compared to other carbons. In the second section, we discuss alkali ion insertion into graphite and graphite-like materials. Though graphite has a long history with Li-ion batteries, it also shows promising characteristics for K-ion batteries. We discuss the significant progress made on improving the electrolyte for high cyclability of graphite with K. Thereafter, we evaluate B/C/N materials that have a similar structure to graphite but can attain higher capacities for both Li and Na. Finally, we touch on the recent developments using alternative solvents for Na cointercalation at graphite and deeper knowledge on the intercalant structure. Despite steady progress, carbon electrodes continue to improve as a key group of materials for alkali energy storage.
随着人们对下一代电池新型电极的兴趣日益浓厚,碳材料凭借其可靠的性能、低成本、低电压反应以及多样的可调性,仍然是最具竞争力的材料。根据碳的结构,它在结晶石墨中与锂反应时可实现高循环稳定性,在无定形多孔硬碳中与钠反应时可具备优异的容量。在本综述中,我们讨论了使用碳电极进行碱金属离子存储的关键成果和研究方向。我们在第一部分首先介绍硬碳(HC),它是下一代钠离子电池备受关注的主要材料。研究了调整硬碳结构以实现高容量孔填充机制的方法。进一步讨论了硬碳电极的倍率性能。我们在这一部分结尾介绍了软碳,与其他碳材料相比,软碳大多仍是性能较差的材料。在第二部分,我们讨论碱金属离子插入石墨及类石墨材料的情况。尽管石墨在锂离子电池领域已有很长历史,但它在钾离子电池中也展现出了有前景的特性。我们讨论了在改进电解质以提高石墨与钾的循环稳定性方面取得的重大进展。此后,我们评估了与石墨结构相似但对锂和钠都能实现更高容量的硼/碳/氮材料。最后,我们介绍了在石墨上使用替代溶剂进行钠共嵌入的最新进展以及对嵌入剂结构的更深入认识。尽管取得了稳步进展,但碳电极作为碱金属储能的关键材料组仍在不断改进。