文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于机器学习的预测模型促进了岩藻黄质产量的提高。 (原英文文本表述不完整,推测补充完整后的翻译,你可根据实际文本进行调整)

Machine learning-based prediction models unleash the enhanced production of fucoxanthin in .

作者信息

Manochkumar Janani, Jonnalagadda Annapurna, Cherukuri Aswani Kumar, Vannier Brigitte, Janjaroen Dao, Chandrasekaran Rajasekaran, Ramamoorthy Siva

机构信息

Laboratory of Plant Biotechnology, Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

School of Computer Science & Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu, India.

出版信息

Front Plant Sci. 2024 Oct 16;15:1461610. doi: 10.3389/fpls.2024.1461610. eCollection 2024.


DOI:10.3389/fpls.2024.1461610
PMID:39479538
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11521944/
Abstract

INTRODUCTION: The marine microalga is prolific producer of fucoxanthin, which is a xanthophyll carotenoid with substantial global market value boasting extensive applications in the food, nutraceutical, pharmaceutical, and cosmetic industries. This study presented a novel integrated experimental approach coupled with machine learning (ML) models to predict the fucoxanthin content in by altering the type and concentration of phytohormone supplementation, thus overcoming the multiple methodological limitations of conventional fucoxanthin quantification. METHODS: A novel integrated experimental approach was developed, analyzing the effect of varying phytohormone types and concentrations on fucoxanthin production in . Morphological analysis was conducted to assess changes in microalgal structure, while growth rate and fucoxanthin yield correlations were explored using statistical analysis and machine learning models. Several ML models were employed to predict fucoxanthin content, with and without hormone descriptors as variables. RESULTS: The findings revealed that the Random Forest (RF) model was highly significant with a high of 0.809 and of 0.776 when hormone descriptors were excluded, and the inclusion of hormone descriptors further improved prediction accuracy to of 0.839, making it a useful tool for predicting the fucoxanthin yield. The model that fitted the experimental data indicated methyl jasmonate (0.2 mg/L) as an effective phytohormone. The combined experimental and ML approach demonstrated rapid, reliable, and cost-efficient prediction of fucoxanthin yield. DISCUSSION: This study highlights the potential of machine learning models, particularly Random Forest, to optimize parameters influencing microalgal growth and fucoxanthin production. This approach offers a more efficient alternative to conventional methods, providing valuable insights into improving fucoxanthin production in microalgal cultivation. The findings suggest that leveraging diverse ML models can enhance the predictability and efficiency of fucoxanthin production, making it a promising tool for industrial applications.

摘要

引言:海洋微藻是岩藻黄质的高产生产者,岩藻黄质是一种叶黄素类胡萝卜素,在全球市场具有重要价值,在食品、营养保健品、制药和化妆品行业有着广泛应用。本研究提出了一种新颖的综合实验方法,并结合机器学习(ML)模型,通过改变植物激素添加的类型和浓度来预测[此处原文缺失具体微藻名称]中的岩藻黄质含量,从而克服了传统岩藻黄质定量方法的多重方法学局限性。 方法:开发了一种新颖的综合实验方法,分析不同植物激素类型和浓度对[此处原文缺失具体微藻名称]中岩藻黄质产量的影响。进行形态学分析以评估微藻结构的变化,同时使用统计分析和机器学习模型探索生长速率与岩藻黄质产量的相关性。采用了几种ML模型来预测岩藻黄质含量,以有无激素描述符作为变量。 结果:研究结果表明,当排除激素描述符时,随机森林(RF)模型具有高度显著性,其R²为0.809,RMSE为0.776,而纳入激素描述符后预测准确率进一步提高到R²为0.839,使其成为预测岩藻黄质产量的有用工具。拟合实验数据的模型表明茉莉酸甲酯(0.2 mg/L)是一种有效的植物激素。实验与ML相结合的方法证明了对岩藻黄质产量进行快速、可靠且经济高效的预测。 讨论:本研究突出了机器学习模型,特别是随机森林,在优化影响微藻生长和岩藻黄质生产的参数方面的潜力。这种方法为传统方法提供了一种更有效的替代方案,为改善微藻培养中岩藻黄质的生产提供了有价值的见解。研究结果表明,利用多种ML模型可以提高岩藻黄质生产的可预测性和效率,使其成为工业应用的有前途的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c0/11521944/15c6749aaf89/fpls-15-1461610-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c0/11521944/729033a3b9da/fpls-15-1461610-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c0/11521944/f1ccfe850a2f/fpls-15-1461610-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c0/11521944/1b1271df242a/fpls-15-1461610-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c0/11521944/28e1d864914c/fpls-15-1461610-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c0/11521944/eaca6fd2a185/fpls-15-1461610-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c0/11521944/15c6749aaf89/fpls-15-1461610-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c0/11521944/729033a3b9da/fpls-15-1461610-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c0/11521944/f1ccfe850a2f/fpls-15-1461610-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c0/11521944/1b1271df242a/fpls-15-1461610-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c0/11521944/28e1d864914c/fpls-15-1461610-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c0/11521944/eaca6fd2a185/fpls-15-1461610-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/20c0/11521944/15c6749aaf89/fpls-15-1461610-g006.jpg

相似文献

[1]
Machine learning-based prediction models unleash the enhanced production of fucoxanthin in .

Front Plant Sci. 2024-10-16

[2]
Production of Fucoxanthin from Microalgae of Djibouti: Optimization, Correlation with Antioxidant Potential, and Bioinformatics Approaches.

Mar Drugs. 2024-8-6

[3]
Combined analysis of chromatin accessibility and gene expression profiles provide insight into Fucoxanthin biosynthesis in under green light.

Front Microbiol. 2023-2-10

[4]
Nutritional Value and Productivity Potential of the Marine Microalgae , and .

Mar Drugs. 2024-8-27

[5]
Multi-omics Analyses Provide Insight into the Biosynthesis Pathways of Fucoxanthin in Isochrysis galbana.

Genomics Proteomics Bioinformatics. 2022-12

[6]
Optimizing tomato waste hydrolysate for enhanced fucoxanthin biosynthesis in mixotrophic cultivation of Isochrysis galbana.

Bioresour Technol. 2024-12

[7]
Bioprospection of Isochrysis galbana and its potential as a nutraceutical.

Food Funct. 2019-10-24

[8]
Determination of fucoxanthin isomers in microalgae (Isochrysis sp.) by high-performance liquid chromatography coupled with diode-array detector multistage mass spectrometry coupled with positive electrospray ionization.

Rapid Commun Mass Spectrom. 2013-5-15

[9]
Bridging artificial intelligence and fucoxanthin for the recovery and quantification from microalgae.

Bioengineered. 2023-12

[10]
Effects of marine phycotoxin dinophysistoxin-1 on the growth and cell cycle of Isochrysis galbana.

Comp Biochem Physiol C Toxicol Pharmacol. 2023-11

引用本文的文献

[1]
Unveiling astaxanthin: biotechnological advances, delivery systems and versatile applications in nutraceuticals and cosmetics.

Arch Microbiol. 2025-1-27

本文引用的文献

[1]
Decoupling cell size homeostasis in diatoms from the geometrical constraints of the silica cell wall.

New Phytol. 2024-7

[2]
Artificial neural networks prediction and optimization based on four light regions for light utilization from Synechocystis sp. PCC 6803.

Bioresour Technol. 2024-2

[3]
Faba bean and pea harvest index estimations using aerial-based multimodal data and machine learning algorithms.

Plant Physiol. 2024-2-29

[4]
Biochemical trade-offs and opportunities of commercialized microalgae cultivation under increasing carbon dioxide.

Bioresour Technol. 2024-2

[5]
Improving microalgae growth modeling of outdoor cultivation with light history data using machine learning models: A comparative study.

Bioresour Technol. 2023-12

[6]
A critical review of machine-learning for "multi-omics" marine metabolite datasets.

Comput Biol Med. 2023-10

[7]
The influence of spermidine on the build-up of fucoxanthin in Isochrysis sp. Acclimated to varying light intensities.

Bioresour Technol. 2023-11

[8]
Enhancement of isoprene production in engineered Synechococcus elongatus UTEX 2973 by metabolic pathway inhibition and machine learning-based optimization strategy.

Bioresour Technol. 2023-11

[9]
Bridging artificial intelligence and fucoxanthin for the recovery and quantification from microalgae.

Bioengineered. 2023-12

[10]
Characteristics prediction of hydrothermal biochar using data enhanced interpretable machine learning.

Bioresour Technol. 2023-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索