利用机器学习模型改进基于光历史数据的户外培养微藻生长建模:一项比较研究。

Improving microalgae growth modeling of outdoor cultivation with light history data using machine learning models: A comparative study.

机构信息

Fraunhofer Institute for Interfacial Engineering and Biotechnology IGB, Nobelstraße 12, 70569 Stuttgart, Germany; Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart, Nobelstraße 12, 70569 Stuttgart, Germany.

Institute of Automation, Dresden University of Technology, Georg-Schumann-Straße 18, 01069 Dresden, Germany.

出版信息

Bioresour Technol. 2023 Dec;390:129882. doi: 10.1016/j.biortech.2023.129882. Epub 2023 Oct 24.

Abstract

Accurate prediction of microalgae growth is crucial for understanding the impacts of light dynamics and optimizing production. Although various mathematical models have been proposed, only a few of them have been validated in outdoor cultivation. This study aims to investigate the use of machine learning algorithms in microalgae growth modeling. Outdoor cultivation data of Phaeodactylum tricornutum in flat-panel airlift photobioreactors for 50 days were used to compare the performance of Long Short-Term Memory (LSTM) and Support Vector Regression (SVR) with traditional models, namely Monod and Haldane. The results indicate that the machine learning models outperform the traditional models due to their ability to utilize light history as input. Moreover, the LSTM model shows an excellent ability to describe the light acclimation effect. Last, two potential applications of these models are demonstrated: 1) use as a biomass soft sensor and 2) development of an optimal harvest strategy for outdoor cultivation.

摘要

准确预测微藻的生长对于理解光动力学的影响和优化生产至关重要。尽管已经提出了各种数学模型,但只有少数模型在户外培养中得到了验证。本研究旨在探讨机器学习算法在微藻生长建模中的应用。使用在平板式气升式光生物反应器中培养的三角褐指藻(Phaeodactylum tricornutum)50 天的户外培养数据,将长短期记忆(LSTM)和支持向量回归(SVR)与传统模型(即 Monod 和 Haldane)进行比较。结果表明,由于机器学习模型能够将光历史作为输入,因此它们的性能优于传统模型。此外,LSTM 模型能够出色地描述光驯化效应。最后,展示了这两种模型的两个潜在应用:1)作为生物量软传感器使用,2)开发户外培养的最佳收获策略。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索