Suppr超能文献

噬菌体 λ感染过程中 DNA 复制的精细时空动力学。

Fine-tuned spatiotemporal dynamics of DNA replication during phage lambda infection.

机构信息

Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, USA.

Center for Phage Technology, Texas A&M University, College Station, Texas, USA.

出版信息

J Virol. 2024 Nov 19;98(11):e0112824. doi: 10.1128/jvi.01128-24. Epub 2024 Oct 31.

Abstract

UNLABELLED

After the ejection of viral DNA into the host cytoplasm, the temperate bacteriophage (phage) lambda integrates a cascade of expressions from various regulatory genes, coupled with DNA replication, to commit to a decision between lysis and lysogeny. Higher multiplicity of infection (MOI) greatly shifts the decision toward the lysogenic pathway. However, how the phage separates the MOI from replicated viral DNA during lysis-lysogeny decision-making is unclear. To quantitatively understand the role of viral DNA replication, we constructed a reporter system facilitating the visualization of individual copies of phage DNA throughout the phage life cycle, along with the lysis-lysogeny reporters. We showed that intracellular viral DNA diverges between the lytic and lysogenic pathways from the early phase of the infection cycle, mostly due to the synchronization and success of DNA injection, as well as the competition for replication resources, rather than the replication rate. Strikingly, we observed two distinct replication patterns during lysogenization and surprisingly heterogeneous integration kinetics, which advances our understanding of temperate phage life cycles. We revealed that the weak repression function of Cro is critical for an optimal replication rate and plays a crucial role in establishing stable lysogens.

IMPORTANCE

Temperate bacteriophages, such as lambda, incorporate environmental cues including host abundance and nutrient conditions to make optimal decisions between propagation and dormancy. A higher phage-to-host ratio or multiplicity of infection (MOI) during λ infection strongly biases toward lysogeny. However, a comprehensive understanding of this decision-making process and the impact of phage replication prior to the decision is yet to be achieved. Here, we used fluorescence microscopy to quantitatively track the spatiotemporal progression of viral DNA replication in individual cells with different cell fates. The implementation of this fluorescent reporter system and quantitative analysis workflow opens a new avenue for future studies to delve deeper into various types of virus-host interactions at a high resolution.

摘要

未加标签

在病毒 DNA 被喷射到宿主细胞质后,温和噬菌体(噬菌体)lambda 将一系列来自各种调控基因的表达级联整合在一起,同时进行 DNA 复制,以决定是裂解还是溶原。较高的感染复数(MOI)极大地促使决定向溶原途径倾斜。然而,在裂解-溶原决策过程中,噬菌体如何将 MOI 与复制的病毒 DNA 分开尚不清楚。为了定量理解病毒 DNA 复制的作用,我们构建了一个报告系统,该系统可以在噬菌体生命周期中可视化噬菌体 DNA 的单个拷贝,同时还构建了裂解-溶原报告系统。我们发现,在感染周期的早期,细胞内病毒 DNA 在裂解和溶原途径之间出现分歧,这主要是由于 DNA 注射的同步和成功,以及复制资源的竞争,而不是复制率。引人注目的是,我们在溶原化过程中观察到两种截然不同的复制模式,以及令人惊讶的异质整合动力学,这推进了我们对温和噬菌体生命周期的理解。我们揭示了 Cro 的弱抑制功能对于最佳复制率至关重要,并在建立稳定的溶原体方面发挥了关键作用。

意义

温和噬菌体,如 lambda,整合了环境线索,包括宿主丰度和营养条件,以在繁殖和休眠之间做出最佳决策。在 λ 感染过程中,噬菌体与宿主的比例或感染复数(MOI)较高时,强烈偏向于溶原。然而,对于这个决策过程以及在决策之前噬菌体复制的影响,我们还没有全面的了解。在这里,我们使用荧光显微镜在具有不同细胞命运的单个细胞中定量跟踪病毒 DNA 复制的时空进展。该荧光报告系统的实施和定量分析工作流程为未来的研究开辟了新的途径,可以更深入地研究各种类型的病毒-宿主相互作用。

相似文献

1
Fine-tuned spatiotemporal dynamics of DNA replication during phage lambda infection.
J Virol. 2024 Nov 19;98(11):e0112824. doi: 10.1128/jvi.01128-24. Epub 2024 Oct 31.
3
Bacteriophage self-counting in the presence of viral replication.
Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2104163118.
4
Bacteriophage λ RexA and RexB functions assist the transition from lysogeny to lytic growth.
Mol Microbiol. 2021 Oct;116(4):1044-1063. doi: 10.1111/mmi.14792. Epub 2021 Aug 30.
5
Lysis-lysogeny coexistence: prophage integration during lytic development.
Microbiologyopen. 2017 Feb;6(1). doi: 10.1002/mbo3.395. Epub 2016 Aug 17.
6
The Developmental Switch in Bacteriophage λ: A Critical Role of the Cro Protein.
J Mol Biol. 2018 Jan 5;430(1):58-68. doi: 10.1016/j.jmb.2017.11.005. Epub 2017 Nov 20.
7
Population Dynamics of Phage and Bacteria in Spatially Structured Habitats Using Phage λ and Escherichia coli.
J Bacteriol. 2016 May 27;198(12):1783-93. doi: 10.1128/JB.00965-15. Print 2016 Jun 15.
8
Elements in the λ immunity region regulate phage development: beyond the 'Genetic Switch'.
Mol Microbiol. 2019 Dec;112(6):1798-1813. doi: 10.1111/mmi.14394. Epub 2019 Oct 8.
9
High-resolution studies of lysis-lysogeny decision-making in bacteriophage lambda.
J Biol Chem. 2019 Mar 8;294(10):3343-3349. doi: 10.1074/jbc.TM118.003209. Epub 2018 Sep 21.
10

本文引用的文献

1
Coinfecting phages impede each other's entry into the cell.
Curr Biol. 2024 Jul 8;34(13):2841-2853.e18. doi: 10.1016/j.cub.2024.05.032. Epub 2024 Jun 14.
2
A functional selection reveals previously undetected anti-phage defence systems in the E. coli pangenome.
Nat Microbiol. 2022 Oct;7(10):1568-1579. doi: 10.1038/s41564-022-01219-4. Epub 2022 Sep 19.
3
Bacteriophage self-counting in the presence of viral replication.
Proc Natl Acad Sci U S A. 2021 Dec 21;118(51). doi: 10.1073/pnas.2104163118.
5
RecA finds homologous DNA by reduced dimensionality search.
Nature. 2021 Sep;597(7876):426-429. doi: 10.1038/s41586-021-03877-6. Epub 2021 Sep 1.
6
Diversity and classification of cyclic-oligonucleotide-based anti-phage signalling systems.
Nat Microbiol. 2020 Dec;5(12):1608-1615. doi: 10.1038/s41564-020-0777-y. Epub 2020 Aug 24.
7
Emerging heterogeneous compartments by viruses in single bacterial cells.
Nat Commun. 2020 Jul 30;11(1):3813. doi: 10.1038/s41467-020-17515-8.
8
Beyond the CRISPR-Cas safeguard: PICI-encoded innate immune systems protect bacteria from bacteriophage predation.
Curr Opin Microbiol. 2020 Aug;56:52-58. doi: 10.1016/j.mib.2020.06.002. Epub 2020 Jul 9.
10
Coupling of DNA Replication and Negative Feedback Controls Gene Expression for Cell-Fate Decisions.
iScience. 2018 Aug 31;6:1-12. doi: 10.1016/j.isci.2018.07.006. Epub 2018 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验