Kim Hugh Andrew Jinwook, De Biasio Michael J, Forte Vito, Gilbert Ralph W, Irish Jonathan C, Goldstein David P, de Almeida John R, Hanasono Matthew M, Yu Peirong, Chepeha Douglas B, Looi Thomas, Yao Christopher M K L
Department of Otolaryngology-Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada.
Department of Otolaryngology-Head and Neck Surgery, Hospital for Sick Children, Toronto, Ontario, Canada.
JAMA Otolaryngol Head Neck Surg. 2024 Dec 1;150(12):1113-1120. doi: 10.1001/jamaoto.2024.3246.
Reconstructive stability after mandibulectomy with osseous autogenous transplant is influenced by masticatory forces and the resulting stress on the titanium plate.
To determine an optimal geometry of mandibular osteotomy that minimizes undesirable loading of the reconstruction plate.
DESIGN, SETTING, AND PARTICIPANTS: In this combined in silico and in vitro basic science study, segmented computed tomography images of an adult male human mandible downloaded from the Visible Human Project were analyzed. Data were collected from July to November 2023.
Four posterolateral mandibular resections and bony transplants were modeled following (1) vertical, (2) angled, (3) step, and (4) sagittal osteotomies. Using SOLIDWORKS software, mastication was simulated under (1) incisal, (2) ipsilateral molar, and (3) contralateral molar loading. Mandible models were then 3-dimensionally printed, osteotomized, and plated. Masticatory loads were simulated using pulleys, and strains were measured using strain gauges.
On the reconstruction plate, von Mises stresses were measured in silico, and strains were measured using strain gauges in vitro. Stress and strain are reactions of a material to loading that can result in irreversible deformation or fracture.
In silico, maximum plate stress was highest with the vertical osteotomy, followed by the angled osteotomy (median difference vs vertical: ipsilateral molar loading, 126 MPa; 95% CI, 18-172; incisal loading, -24 MPa; 95% CI, -89 to 31; contralateral molar loading, 91 MPa; 95% CI, 23-189), step osteotomy (median difference vs angled: ipsilateral molar loading, 168 MPa; 95% CI, 112-235; incisal loading, 80 MPa; 95% CI, 15-140; contralateral molar loading, -17; 95% CI, -115 to 83), and sagittal osteotomy (median difference vs step: ipsilateral molar loading, 122 MPa; 95% CI, 102-154; incisal loading, 197 MPa; 95% CI, 166-230; contralateral molar loading, 161 MPa; 95% CI, 21-232). An angled osteotomy had the lowest stress at 30° of angulation (median difference vs contralateral molar loading at 40° of angulation: 111 MPa; 95% CI, 4-186). In vitro, the vertical osteotomy had the highest maximum strain, followed by the angled osteotomy (mean difference vs vertical: incisal loading, 0.021 mV/V; 95% CI, 0.014-0.027; contralateral molar loading, 0 mV/V; 95% CI, -0.004 to 0.005), step osteotomy (mean difference vs angled: incisal loading, 0.015 mV/V; 95% CI, 0.003-0.028; contralateral molar loading, 0.021 mV/V; 95% CI, 0.016-0.027), and sagittal osteotomy (mean difference vs step: incisal loading, 0.006 mV/V; 95% CI, -0.006 to 0.018; contralateral molar loading, 0.020 mV/V; 95% CI, 0.015-0.026).
In this study, the traditional vertical osteotomy resulted in less favorable plate stresses in all loading scenarios compared with angled, step, or sagittal osteotomies, in silico and in vitro. Future clinical studies analyzing the impact of varying osteotomy geometries are warranted to translate these findings to the operating room.
自体骨移植下颌骨切除术后的重建稳定性受咀嚼力及钛板所受应力的影响。
确定一种能使重建钢板承受的不良负荷最小化的下颌骨截骨术最佳几何形状。
设计、设置和参与者:在这项计算机模拟和体外基础科学联合研究中,分析了从可视人项目下载的一名成年男性人类下颌骨的断层计算机断层扫描图像。数据收集于2023年7月至11月。
按照(1)垂直、(2)成角、(3)阶梯状和(4)矢状截骨术对下颌骨后外侧的四次切除和骨移植进行建模。使用SOLIDWORKS软件,在(1)切牙、(2)同侧磨牙和(3)对侧磨牙负荷下模拟咀嚼。然后对下颌骨模型进行三维打印、截骨并固定钢板。使用滑轮模拟咀嚼负荷,并使用应变片测量应变。
在计算机模拟中测量重建钢板上的von Mises应力,在体外使用应变片测量应变。应力和应变是材料对负荷的反应,可导致不可逆变形或骨折。
在计算机模拟中,垂直截骨术时钢板的最大应力最高,其次是成角截骨术(与垂直截骨术相比的中位数差异:同侧磨牙负荷,126MPa;95%可信区间,18 - 172;切牙负荷,-24MPa;95%可信区间,-89至31;对侧磨牙负荷,91MPa;95%可信区间,23 - 189)、阶梯状截骨术(与成角截骨术相比的中位数差异:同侧磨牙负荷,168MPa;95%可信区间,112 - 235;切牙负荷,80MPa;95%可信区间,15 - 140;对侧磨牙负荷,-17;95%可信区间,-115至83)和矢状截骨术(与阶梯状截骨术相比的中位数差异:同侧磨牙负荷,122MPa;95%可信区间,102 - 154;切牙负荷,197MPa;95%可信区间,166 - 230;对侧磨牙负荷,161MPa;95%可信区间,21 - 232)。成角30°时的截骨术应力最低(与成角40°时的对侧磨牙负荷相比的中位数差异:111MPa;95%可信区间,4 - 186)。在体外,垂直截骨术的最大应变最高,其次是成角截骨术(与垂直截骨术相比的平均差异:切牙负荷,0.021mV/V;95%可信区间,0.014 - 0.027;对侧磨牙负荷,0mV/V;95%可信区间,-0.004至0.005)、阶梯状截骨术(与成角截骨术相比的平均差异:切牙负荷,0.015mV/V;95%可信区间,0.003 - 0.028;对侧磨牙负荷,0.021mV/V;95%可信区间,0.016 - 0.027)和矢状截骨术(与阶梯状截骨术相比的平均差异:切牙负荷,0.006mV/V;95%可信区间,-0.006至0.018;对侧磨牙负荷,0.020mV/V;95%可信区间,0.015 - 0.026)。
在本研究中,与成角、阶梯状或矢状截骨术相比,传统的垂直截骨术在计算机模拟和体外的所有负荷情况下均导致钢板应力更不理想。有必要开展未来的临床研究分析不同截骨术几何形状的影响,以便将这些发现应用于手术室。