Suppr超能文献

High-Fidelity and High-Efficiency Talking Portrait Synthesis With Detail-Aware Neural Radiance Fields.

作者信息

Wang Muyu, Zhao Sanyuan, Dong Xingping, Shen Jianbing

出版信息

IEEE Trans Vis Comput Graph. 2025 Sep;31(9):6022-6035. doi: 10.1109/TVCG.2024.3488960.

Abstract

In this paper, we propose a novel rendering framework based on neural radiance fields (NeRF) named HH-NeRF that can generate high-resolution audio-driven talking portrait videos with high fidelity and fast rendering. Specifically, our framework includes a detail-aware NeRF module and an efficient conditional super-resolution module. First, a detail-aware NeRF is proposed to efficiently generate a high-fidelity low-resolution talking head, by using the encoded volume density estimation and audio-eye-aware color calculation. This module can capture natural eye blinks and high-frequency details, and maintain a similar rendering time as previous fast methods. Secondly, we present an efficient conditional super-resolution module on the dynamic scene to directly generate the high-resolution portrait with our low-resolution head. Incorporated with the prior information, such as depth map and audio features, our new proposed efficient conditional super resolution module can adopt a lightweight network to efficiently generate realistic and distinct high-resolution videos. Extensive experiments demonstrate that our method can generate more distinct and fidelity talking portraits on high resolution (900 × 900) videos compared to state-of-the-art methods.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验