Suppr超能文献

UC-NeRF:基于内窥镜稀疏视图的不确定性感知条件神经辐射场

UC-NeRF: Uncertainty-Aware Conditional Neural Radiance Fields From Endoscopic Sparse Views.

作者信息

Guo Jiaxin, Wang Jiangliu, Wei Ruofeng, Kang Di, Dou Qi, Liu Yun-Hui

出版信息

IEEE Trans Med Imaging. 2025 Mar;44(3):1284-1296. doi: 10.1109/TMI.2024.3496558. Epub 2025 Mar 17.

Abstract

Visualizing surgical scenes is crucial for revealing internal anatomical structures during minimally invasive procedures. Novel View Synthesis is a vital technique that offers geometry and appearance reconstruction, enhancing understanding, planning, and decision-making in surgical scenes. Despite the impressive achievements of Neural Radiance Field (NeRF), its direct application to surgical scenes produces unsatisfying results due to two challenges: endoscopic sparse views and significant photometric inconsistencies. In this paper, we propose uncertainty-aware conditional NeRF for novel view synthesis to tackle the severe shape-radiance ambiguity from sparse surgical views. The core of UC-NeRF is to incorporate the multi-view uncertainty estimation to condition the neural radiance field for modeling the severe photometric inconsistencies adaptively. Specifically, our UC-NeRF first builds a consistency learner in the form of multi-view stereo network, to establish the geometric correspondence from sparse views and generate uncertainty estimation and feature priors. In neural rendering, we design a base-adaptive NeRF network to exploit the uncertainty estimation for explicitly handling the photometric inconsistencies. Furthermore, an uncertainty-guided geometry distillation is employed to enhance geometry learning. Experiments on the SCARED and Hamlyn datasets demonstrate our superior performance in rendering appearance and geometry, consistently outperforming the current state-of-the-art approaches. Our code will be released at https://github.com/wrld/UC-NeRF.

摘要

在微创手术过程中,可视化手术场景对于揭示内部解剖结构至关重要。新颖视图合成是一项重要技术,可提供几何形状和外观重建,增强对手术场景的理解、规划和决策。尽管神经辐射场(NeRF)取得了令人瞩目的成就,但其直接应用于手术场景时,由于两个挑战而产生了不尽人意的结果:内窥镜稀疏视图和显著的光度不一致性。在本文中,我们提出了用于新颖视图合成的不确定性感知条件NeRF,以解决稀疏手术视图中严重的形状 - 辐射模糊性。UC - NeRF的核心是纳入多视图不确定性估计,以调整神经辐射场,从而自适应地对严重的光度不一致性进行建模。具体而言,我们的UC - NeRF首先构建一个多视图立体网络形式的一致性学习器,以从稀疏视图建立几何对应关系,并生成不确定性估计和特征先验。在神经渲染中,我们设计了一个基于自适应的NeRF网络,以利用不确定性估计来明确处理光度不一致性。此外,采用不确定性引导的几何蒸馏来增强几何学习。在SCARED和Hamlyn数据集上的实验表明,我们在渲染外观和几何形状方面具有卓越性能,始终优于当前的最先进方法。我们的代码将在https://github.com/wrld/UC - NeRF上发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验