Suppr超能文献

GMNI:在无监督图对比学习中实现良好的数据增强。

GMNI: Achieve good data augmentation in unsupervised graph contrastive learning.

作者信息

Xiong Xin, Wang Xiangyu, Yang Suorong, Shen Furao, Zhao Jian

机构信息

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China; School of Artificial Intelligence, Nanjing University, Nanjing, 210023, China.

State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, 210023, China; Department of Computer Science and Technology, Nanjing University, Nanjing, 210023, China.

出版信息

Neural Netw. 2025 Jan;181:106804. doi: 10.1016/j.neunet.2024.106804. Epub 2024 Oct 18.

Abstract

Graph contrastive learning (GCL) shows excellent potential in unsupervised graph representation learning. Data augmentation (DA), responsible for generating diverse views, plays a vital role in GCL, and its optimal choice heavily depends on the downstream task. However, it is impossible to measure task-relevant information under an unsupervised setting. Therefore, many GCL methods risk insufficient information by failing to preserve essential information necessary for the downstream task or risk encoding redundant information. In this paper, we propose a novel method called Minimal Noteworthy Information for unsupervised Graph contrastive learning (GMNI), featuring automated DA. It achieves good DA by balancing missing and excessive information, approximating the optimal views in contrastive learning. We employ an adversarial training strategy to generate views that share minimal noteworthy information (MNI), reducing nuisance information by minimization optimization and ensuring sufficient information by emphasizing noteworthy information. Besides, we introduce randomness based on MNI to augmentation, thereby enhancing view diversity and stabilizing the model against perturbations. Extensive experiments on unsupervised and semi-supervised learning over 14 datasets demonstrate the superiority of GMNI over GCL methods with automated and manual DA. GMNI achieves up to a 1.64% improvement over the state-of-the-art in unsupervised node classification, up to a 1.97% improvement in unsupervised graph classification, and up to a 3.57% improvement in semi-supervised graph classification.

摘要

图对比学习(GCL)在无监督图表示学习中展现出卓越的潜力。负责生成多样视图的数据增强(DA)在GCL中起着至关重要的作用,其最优选择在很大程度上取决于下游任务。然而,在无监督设置下无法衡量与任务相关的信息。因此,许多GCL方法存在风险,要么因未能保留下游任务所需的基本信息而导致信息不足,要么因编码了冗余信息而存在风险。在本文中,我们提出了一种名为用于无监督图对比学习的最小显著信息(GMNI)的新方法,其特点是自动化数据增强。它通过平衡缺失信息和过多信息来实现良好的数据增强,在对比学习中逼近最优视图。我们采用对抗训练策略来生成共享最小显著信息(MNI)的视图,通过最小化优化减少干扰信息,并通过强调显著信息确保足够的信息。此外,我们基于MNI引入随机性进行增强,从而提高视图多样性并使模型对扰动具有稳定性。在14个数据集上进行的无监督和半监督学习的广泛实验证明了GMNI相对于具有自动化和手动数据增强的GCL方法的优越性。在无监督节点分类中,GMNI比当前最优方法提升高达1.64%,在无监督图分类中提升高达1.97%,在半监督图分类中提升高达3.57%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验