Suppr超能文献

DACG:用于放射科报告生成的双注意和上下文引导模型。

DACG: Dual Attention and Context Guidance model for radiology report generation.

机构信息

School of Information Science and Technology, Dalian Maritime University, Dalian 116026, Liaoning, China.

School of Information Science and Technology, Dalian Maritime University, Dalian 116026, Liaoning, China.

出版信息

Med Image Anal. 2025 Jan;99:103377. doi: 10.1016/j.media.2024.103377. Epub 2024 Oct 23.

Abstract

Medical images are an essential basis for radiologists to write radiology reports and greatly help subsequent clinical treatment. The task of generating automatic radiology reports aims to alleviate the burden of clinical doctors writing reports and has received increasing attention this year, becoming an important research hotspot. However, there are severe issues of visual and textual data bias and long text generation in the medical field. Firstly, Abnormal areas in radiological images only account for a small portion, and most radiological reports only involve descriptions of normal findings. Secondly, there are still significant challenges in generating longer and more accurate descriptive texts for radiology report generation tasks. In this paper, we propose a new Dual Attention and Context Guidance (DACG) model to alleviate visual and textual data bias and promote the generation of long texts. We use a Dual Attention Module, including a Position Attention Block and a Channel Attention Block, to extract finer position and channel features from medical images, enhancing the image feature extraction ability of the encoder. We use the Context Guidance Module to integrate contextual information into the decoder and supervise the generation of long texts. The experimental results show that our proposed model achieves state-of-the-art performance on the most commonly used IU X-ray and MIMIC-CXR datasets. Further analysis also proves that our model can improve reporting through more accurate anomaly detection and more detailed descriptions. The source code is available at https://github.com/LangWY/DACG.

摘要

医学影像作为放射科医生撰写放射报告的重要依据,对后续临床治疗有很大帮助。自动生成放射报告的任务旨在减轻临床医生撰写报告的负担,今年受到越来越多的关注,成为一个重要的研究热点。然而,医学领域存在严重的视觉和文本数据偏差以及长文本生成问题。首先,放射图像中的异常区域只占很小一部分,大多数放射报告仅涉及正常发现的描述。其次,对于放射报告生成任务,生成更长、更准确的描述性文本仍然存在很大的挑战。

在本文中,我们提出了一种新的双注意和上下文引导(DACG)模型,以减轻视觉和文本数据偏差,并促进长文本的生成。我们使用双注意模块,包括位置注意块和通道注意块,从医学图像中提取更精细的位置和通道特征,增强编码器的图像特征提取能力。我们使用上下文引导模块将上下文信息集成到解码器中,并监督长文本的生成。实验结果表明,我们提出的模型在最常用的 IU X 射线和 MIMIC-CXR 数据集上取得了最先进的性能。进一步的分析也证明了我们的模型可以通过更准确的异常检测和更详细的描述来提高报告质量。

代码可在https://github.com/LangWY/DACG上获取。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验