Mamdouh Dima, Attia Mariam, Osama Mohamed, Mohamed Nesma, Lotfy Abdelrahman, Arafa Tamer, Rashed Essam A, Khoriba Ghada
Center for Informatics Science, School of Information Technology and Computer Science (ITCS), Nile University, Giza 12588, Egypt.
Graduate School of Information Science, University of Hyogo, Kobe 650-0047, Japan.
Bioengineering (Basel). 2025 Jun 25;12(7):693. doi: 10.3390/bioengineering12070693.
The growing demand for radiological services, amplified by a shortage of qualified radiologists, has resulted in significant challenges in managing the increasing workload while ensuring the accuracy and timeliness of radiological reports. To address these issues, recent advancements in artificial intelligence (AI), particularly in transformer models, vision-language models (VLMs), and Large Language Models (LLMs), have emerged as promising solutions for radiology report generation (RRG). These systems aim to make diagnosis faster, reduce the workload for radiologists by handling routine tasks, and help generate high-quality, consistent reports that support better clinical decision-making. This comprehensive study covers RRG developments from 2021 to 2025, focusing on emerging transformer-based and VLMs, highlighting the key methods, architectures, and techniques employed. We examine the datasets currently available for RRG applications and the evaluation metrics commonly used to assess model performance. In addition, the study analyzes the performance of the leading models in the field, identifying the top performers and offering insights into their strengths and limitations. Finally, this study proposes new directions for future research, emphasizing potential improvements to existing systems and exploring new avenues for advancing the capabilities of AI in radiology report generation.
对放射学服务日益增长的需求,因合格放射科医生短缺而加剧,这在管理不断增加的工作量同时确保放射学报告的准确性和及时性方面带来了重大挑战。为解决这些问题,人工智能(AI)的最新进展,特别是在变压器模型、视觉语言模型(VLM)和大语言模型(LLM)方面,已成为放射学报告生成(RRG)的有前景的解决方案。这些系统旨在使诊断更快,通过处理常规任务减轻放射科医生的工作量,并帮助生成高质量、一致的报告以支持更好的临床决策。这项全面的研究涵盖了2021年至2025年的RRG发展,重点关注新兴的基于变压器的模型和VLM,突出所采用的关键方法、架构和技术。我们研究了目前可用于RRG应用的数据集以及通常用于评估模型性能的评估指标。此外,该研究分析了该领域领先模型的性能,确定了顶级 performers,并深入了解它们的优势和局限性。最后,本研究提出了未来研究的新方向,强调对现有系统的潜在改进,并探索提升AI在放射学报告生成能力的新途径。