State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
J Environ Sci (China). 2025 May;151:200-210. doi: 10.1016/j.jes.2024.03.009. Epub 2024 Mar 19.
Reactive oxygen species (ROS) are closely related to cell death, proliferation and inflammation. However, excessive ROS levels may exceed the cellular oxidative capacity and cause irreversible damage. Organisms are often inadvertently exposed to nanomaterials (NMs). Therefore, elucidating the specific routes of ROS generation induced by NMs is crucial for comprehending the toxicity mechanisms of NMs and regulating their potential applications. This paper provides a comprehensive review of the toxicity mechanisms and applications of NMs from three perspectives: (1) Organelle perspective. Investigating the impact of NM-mediated ROS on mitochondria, unraveling mechanisms at the organelle level. (2) NMs' perspective. Exploring the broad applications and biosafety considerations of Nanozymes, a unique class of NMs. (3) Cellular system. Examining the toxic effects and mechanisms of NMs in cells at a holistic cellular level. Expanding on these perspectives, the paper scrutinizes the regulation of Fenton reactions by NMs in organisms. Furthermore, it introduces diseases resulting from NM-mediated ROS at the organism level. This comprehensive review aims to provide valuable insights for studying NM-mediated mechanisms at both cellular and organism levels, offering considerations for the safe design of nanomaterials.
活性氧(ROS)与细胞死亡、增殖和炎症密切相关。然而,过量的 ROS 水平可能超过细胞的氧化能力,造成不可逆转的损伤。生物体经常会无意中接触到纳米材料(NMs)。因此,阐明 NMs 诱导 ROS 产生的特定途径对于理解 NMs 的毒性机制和调节其潜在应用至关重要。本文从三个方面全面综述了 NMs 的毒性机制和应用:(1)细胞器视角。研究 NM 介导的 ROS 对线粒体的影响,揭示细胞器水平的机制。(2)NMs 视角。探索纳米酶这一独特的 NMs 类别的广泛应用和生物安全性考虑。(3)细胞系统。在整体细胞水平上考察 NMs 在细胞中的毒性作用和机制。在此基础上,本文探讨了 NMs 在生物体中对 Fenton 反应的调控作用。此外,还介绍了 NM 介导的 ROS 在生物体水平上引发的疾病。本文综述旨在为研究 NM 介导的细胞和生物体水平的机制提供有价值的见解,并为纳米材料的安全设计提供考虑因素。