Suppr超能文献

利用人工智能在磁共振成像中早期检测乳腺癌

Early Detection of Breast Cancer in MRI Using AI.

作者信息

Hirsch Lukas, Huang Yu, Makse Hernan A, Martinez Danny F, Hughes Mary, Eskreis-Winkler Sarah, Pinker Katja, Morris Elizabeth A, Parra Lucas C, Sutton Elizabeth J

机构信息

City College of New York, 160 Convent Ave, New York, New York 10031, USA.

Memorial Sloan Kettering Cancer Center, 300 E 66th St Floors 1 - 4, New York, New York 10065, USA.

出版信息

Acad Radiol. 2025 Mar;32(3):1218-1225. doi: 10.1016/j.acra.2024.10.014. Epub 2024 Oct 30.

Abstract

RATIONALE AND OBJECTIVES

To develop and evaluate an AI algorithm that detects breast cancer in MRI scans up to one year before radiologists typically identify it, potentially enhancing early detection in high-risk women.

MATERIALS AND METHODS

A convolutional neural network (CNN) AI model, pre-trained on breast MRI data, was fine-tuned using a retrospective dataset of 3029 MRI scans from 910 patients. These contained 115 cancers that were diagnosed within one year of a negative MRI. The model aimed to identify these cancers, with the goal of predicting cancer development up to one year in advance. The network was fine-tuned and tested with 10-fold cross-validation. Mean age of patients was 52 years (range, 18-88 years), with average follow-up of 4.3 years (range 1-12 years).

RESULTS

The AI detected cancers one year earlier with an area under the ROC curve of 0.72 (0.67-0.76). Retrospective analysis by a radiologist of the top 10% highest risk MRIs as ranked by the AI could have increased early detection by up to 30%. (35/115, CI:22.2-39.7%, 30% sensitivity). A radiologist identified a visual correlate to biopsy-proven cancers in 83 of prior-year MRIs (83/115, CI: 62.1-79.4%). The AI algorithm identified the anatomic region where cancer would be detected in 66 cases (66/115, CI:47.8-66.5%); with both agreeing in 54 cases (54/115, CI:%37.5-56.4%).

CONCLUSION

This novel AI-aided re-evaluation of "benign" breasts shows promise for improving early breast cancer detection with MRI. As datasets grow and image quality improves, this approach is expected to become even more impactful.

摘要

原理与目的

开发并评估一种人工智能算法,该算法能够在放射科医生通常识别乳腺癌之前长达一年的时间内,在磁共振成像(MRI)扫描中检测出乳腺癌,这有可能提高高危女性的早期检测率。

材料与方法

一个在乳腺MRI数据上进行预训练的卷积神经网络(CNN)人工智能模型,使用来自910名患者的3029次MRI扫描的回顾性数据集进行微调。这些数据集中包含115例在MRI检查为阴性后的一年内被诊断出的癌症。该模型旨在识别这些癌症,目标是提前一年预测癌症的发展。该网络通过10折交叉验证进行微调与测试。患者的平均年龄为52岁(范围18 - 88岁),平均随访时间为4.3年(范围1 - 12年)。

结果

人工智能能够提前一年检测出癌症,其受试者工作特征曲线(ROC)下面积为0.72(0.67 - 0.76)。放射科医生对人工智能排名前10%的最高风险MRI进行回顾性分析,可将早期检测率提高多达30%(35/115,置信区间:22.2 - 39.7%,灵敏度30%)。放射科医生在83例前一年的MRI中识别出与活检证实的癌症有视觉关联(83/115,置信区间:62.1 - 79.4%)。人工智能算法在66例中识别出了将检测到癌症的解剖区域(66/115,置信区间:47.8 - 66.5%);两者在54例中达成一致(54/115,置信区间:37.5 - 56.4%)。

结论

这种对“良性”乳房进行的新型人工智能辅助重新评估显示出在通过MRI改善早期乳腺癌检测方面具有前景。随着数据集的增加和图像质量的提高,这种方法预计将产生更大的影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f330/11875922/f6a8cd7d3793/nihms-2032993-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验