Egemonye ThankGod C, Unimuke Tomsmith O
Department of Pure and Applied Chemistry, University of Calabar, PMB 1115, Calabar, Nigeria.
Sci Rep. 2024 Oct 31;14(1):26244. doi: 10.1038/s41598-024-77150-x.
Nanostructured materials have gained significant attention as anode material in rechargeable lithium-ion batteries due to their large surface-to-volume ratio and efficient lithium-ion intercalation. Herein, we systematically investigated the electronic and electrochemical performance of pristine and endohedral doped (O and Se) GeC and SiC nanocages as a prospective negative electrode for lithium-ion batteries using high-level density functional theory at the DFT/B3LYP-GD3(BJ)/6-311 + G(d, p)/GEN/LanL2DZ level of theory. Key findings from frontier molecular orbital (FMO) and density of states (DOS) revealed that endohedral doping of the studied nanocages with O and Se tremendously enhances their electrical conductivity. Furthermore, the pristine SiC nanocage brilliantly exhibited the highest V (1.49 V) and theoretical capacity (668.42 mAh g) among the investigated nanocages and, hence, the most suitable negative electrode material for lithium-ion batteries. Moreover, we utilized four machine learning regression algorithms, namely, Linear, Lasso, Ridge, and ElasticNet regression, to predict the V of the nanocages obtained from DFT simulation, achieving R scores close to 1 (R = 0.99) and lower RMSE values (RMSE < 0.05). Among the regression algorithms, Lasso regression demonstrated the best performance in predicting the V of the nanocages, owing to its L1 regularization technique.
由于其大的表面体积比和高效的锂离子嵌入,纳米结构材料作为可充电锂离子电池的负极材料受到了广泛关注。在此,我们使用DFT/B3LYP-GD3(BJ)/6-311+G(d, p)/GEN/LanL2DZ理论水平的高水平密度泛函理论,系统地研究了原始的和内掺杂(O和Se)的GeC和SiC纳米笼作为锂离子电池负极材料的电子和电化学性能。前沿分子轨道(FMO)和态密度(DOS)的关键发现表明,用O和Se对所研究的纳米笼进行内掺杂极大地提高了它们的电导率。此外,在研究的纳米笼中,原始的SiC纳米笼出色地展现出最高的电压(1.49 V)和理论容量(668.42 mAh g),因此是最适合锂离子电池的负极材料。此外,我们使用了四种机器学习回归算法,即线性回归、套索回归、岭回归和弹性网络回归,来预测通过DFT模拟获得的纳米笼的电压,获得了接近1的R分数(R = 0.99)和更低的均方根误差值(RMSE < 0.05)。在回归算法中,套索回归由于其L1正则化技术,在预测纳米笼的电压方面表现最佳。